Predictive Analytics-Driven Decision Support System for Earned Value Management Using Ensemble Learning in Megaprojects

Authors

  • Bamidele Samuel Adelusi Independent Researcher, Texas, USA Author
  • Abel Chukwuemeke Uzoka United Parcel Service, Inc.(UPS), Parsippany, New Jersey, USA Author
  • Yewande Goodness Hassan Casava MicroInsurance Ltd, Nigeria Author
  • Favour Uche Ojika Independent Researcher, Minnesota, USA Author

DOI:

https://doi.org/10.32628/IJSRCE

Keywords:

Predictive Analytics, Earned Value Management, Ensemble Learning, Megaprojects, Decision Support Systems, Forecast Accuracy Optimization

Abstract

This paper presents a predictive analytics-driven decision support system (DSS) for enhancing Earned Value Management (EVM) in large-scale infrastructure megaprojects. By integrating ensemble learning models such as Random Forests, Gradient Boosting Machines, and XGBoost, the proposed framework improves forecasting accuracy for cost variance (CV), schedule variance (SV), and Estimate at Completion (EAC). These models are trained on multivariate historical project data including baseline budgets, work performance indices, risk profiles, and change order logs. A key feature of this DSS is its capacity to dynamically recalibrate predictive models using real-time project control data, thereby enabling continuous optimization of decision-making under uncertainty. Comparative analysis against traditional parametric EVM forecasting techniques demonstrates significant improvements in Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) across diverse megaproject scenarios. The system also incorporates explainable AI (XAI) techniques such as SHAP and LIME to enhance transparency in predictive reasoning, facilitating project stakeholder trust and actionable insights. The findings emphasize the strategic potential of ensemble machine learning in minimizing project overruns, improving planning reliability, and elevating the maturity of project analytics in complex, resource-intensive environments. This work offers a replicable blueprint for modernizing project control systems through data-driven intelligence.

Downloads

Download data is not yet available.

References

Abisoye, A. (2023). Developing a Conceptual Framework for AI-Driven Curriculum Adaptation to Align with Emerging STEM Industry Demands.

Abisoye, A., & Akerele, J. I. (2022). A scalable and impactful model for harnessing artificial intelligence and cybersecurity to revolutionize workforce development and empower marginalized youth. Int J Multidiscip Res Growth Eval, 3(1), 714-719.

Abisoye, A., &Akerele, J. I. (2023). AI Literacy in STEM Education: Policy Strategies for Preparing the Future Workforce.

Adekunle, B. I., Chukwuma-Eke, E. C., Balogun, E. D., &Ogunsola, K. O. (2023). Integrating AI-driven risk assessment frameworks in financial operations: A model for enhanced corporate governance. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 9(6), 445–464.

Adepoju, A. H., Austin-Gabriel, B. L. E. S. S. I. N. G., Eweje, A. D. E. O. L. U. W. A., & Collins, A. N. U. O. L. U. W. A. P. O. (2022). Framework for automating multi-team workflows to maximize operational efficiency and minimize redundant data handling. IRE Journals, 5(9), 663-664.

Adepoju, A. H., Austin-Gabriel, B. L. E. S. S. I. N. G., Hamza, O. L. A. D. I. M. E. J. I., & Collins, A. N. U. O. L. U. W. A. P. O. (2022). Advancing monitoring and alert systems: A proactive approach to improving reliability in complex data ecosystems. IRE Journals, 5(11), 281-282.

Adepoju, A. H., Eweje, A., Collins, A., & Hamza, O. (2023). Developing strategic roadmaps for data-driven organizations: A model for aligning projects with business goals.Int J Multidiscip Res Growth Eval, 4(6), 1128–1140.

Adesemoye, O. E., Chukwuma-Eke, E. C., Lawal, C. I., Isibor, N. J., Akintobi, A. O., &Ezeh, F. S. (2023). Optimizing SME banking with data analytics for economic growth and job creation. International Journal of Social Science Exceptional Research, 2(1), 262–276.

Adesemoye, O. E., Chukwuma-Eke, E. C., Lawal, C. I., Isibor, N. J., Akintobi, A. O., & Ezeh, F. S. (2021). Improving financial forecasting accuracy through advanced data visualization techniques. IRE Journals, 4(10), 275–277. https://irejournals.com/paper-details/1708078

Ajiga, D., Ayanponle, L., & Okatta, C. G. (2022). AI-powered HR analytics: Transforming workforce optimization and decision-making. International Journal of Science and Research Archive, 5(2), 338-346.

Akintobi, A. O., Okeke, I. C., & Ajani, O. B. (2023). Strategic tax planning for multinational corporations: Developing holistic approaches to achieve compliance and profit optimization.Int J Multidiscip Res Updates, 6(1), 025–032.

Akpe, O. E. E., Kisina, D., Owoade, S., Uzoka, A. C., Ubanadu, B. C., & Daraojimba, A. I. (2022). Systematic review of application modernization strategies using modular and service-oriented design principles. International Journal of Multidisciplinary Research and Growth Evaluation, 2(1), 995–1001. https://doi.org/10.54660/IJMRGE.2022.2.1.995-1001

Akpe, O. E. E., Mgbame, A. C., Ogbuefi, E., Abayomi, A. A., & Adeyelu, O. O. (2020). Bridging the business intelligence gap in small enterprises: A conceptual framework for scalable adoption. IRE Journals, 4(2), 159–161. https://irejournals.com/paper-details/1708222

Basiru, J. O., Ejiofor, C. L., Onukwulu, E. C., & Attah, R. U. (2022). Streamlining procurement processes in engineering and construction companies: a comparative analysis of best practices. Magna Sci Adv Res Rev, 6(1), 118-35.

Bristol-Alagbariya, B., Ayanponle, O. L., & Ogedengbe, D. E. (2023). Utilization of HR analytics for strategic cost optimization and decision making. International Journal of Scientific Research Updates, 6(2), 62-69.

Bristol-Alagbariya, B., Ayanponle, O. L., & Ogedengbe, D. E. (2022). Integrative HR approaches in mergers and acquisitions ensuring seamless organizational synergies. Magna Scientia Advanced Research and Reviews, 6(1), 78-85.

Bristol-Alagbariya, B., Ayanponle, O. L., & Ogedengbe, D. E. (2022). Strategic frameworks for contract management excellence in global energy HR operations. GSC Advanced Research and Reviews, 11(3), 150-157.

Collins, A., Hamza, O., & Eweje, A. (2022). CI/CD pipelines and BI tools for automating cloud migration in telecom core networks: A conceptual framework. IRE Journals, 5(10), 323-324.

Collins, A., Hamza, O., & Eweje, A. (2022). Revolutionizing edge computing in 5G networks through Kubernetes and DevOps practices. IRE Journals, 5(7), 462-463.

Ezeafulukwe, C., Okatta, C. G., & Ayanponle, L. (2022). Frameworks for sustainable human resource management: Integrating ethics, CSR, and Data-Driven Insights.

Faith, D. O. (2018). A review of the effect of pricing strategies on the purchase of consumer goods. International Journal of Research in Management, Science & Technology (E-ISSN: 2321-3264) Vol, 2.

Hassan, Y. G., Collins, A., Babatunde, G. O., Alabi, A. A., & Mustapha, S. D. (2023). AI-powered cyber-physical security framework for critical industrial IoT systems.

Ilori, O., Lawal, C. I., Friday, S. C., Isibor, N. J., & Chukwuma-Eke, E. C. (2022). Cybersecurity Auditing in the Digital Age: A Review of Methodologies and Regulatory Implications.

Ilori, O., Lawal, C. I., Friday, S. C., Isibor, N. J., & Chukwuma-Eke, E. C. (2022). The Role of Data Visualization and Forensic Technology in Enhancing Audit Effectiveness: A Research Synthesis.

Isibor, N. J., Ibeh, A. I., Ewim, C. P. M., Sam-Bulya, N. J., & Martha, E. (2022). A Financial Control and Performance Management Framework for SMEs: Strengthening Budgeting, Risk Mitigation, and Profitability. International Journal of Multidisciplinary Research and Growth Evaluation, 3(1), 761-768.

Kisina, D., Akpe, O. E. E., Owoade, S., Ubanadu, B. C., Gbenle, T. P., & Adanigbo, O. S. (2022). Advances in continuous integration and deployment workflows across multi-team development pipelines. International Journal of Multidisciplinary Research and Growth Evaluation, 2(1), 990–994. https://doi.org/10.54660/IJMRGE.2022.2.1.990-994

Mgbame, A. C., Akpe, O. E. E., Abayomi, A. A., Ogbuefi, E., & Adeyelu, O. O. (2020). Barriers and enablers of BI tool implementation in underserved SME communities. IRE Journals, 3(7), 211–213. https://irejournals.com/paper-details/1708221

Ogunwole, O., Onukwulu, E. C., Joel, M. O., Adaga, E. M., &Ibeh, A. I. (2023). Modernizing legacy systems: A scalable approach to next-generation data architectures and seamless integration. International Journal of Multidisciplinary Research and Growth Evaluation, 4(1), 901–909.

Ogunwole, O., Onukwulu, E. C., Sam-Bulya, N. J., Joel, M. O., & Achumie, G. O. (2022). Optimizing automated pipelines for realtime data processing in digital media and e-commerce. International Journal of Multidisciplinary Research and Growth Evaluation, 3(1), 112-120.

Ojika, F. U., Owobu, W. O., Abieba, O. A., Esan, O. J., Ubamadu, B. C., &Daraojimba, A. I. (2023). A Predictive Analytics Model for Strategic Business Decision-Making: A Framework for Financial Risk Minimization and Resource Optimization.

Okeke, I. C., Agu, E. E., Ejike, O. G., Ewim, C. P. M., & Komolafe, M. O. (2022). A conceptual model for financial advisory standardization: Bridging the financial literacy gap in Nigeria. International Journal of Frontline Research in Science and Technology, 1(02), 038-052.

Okeke, I. C., Agu, E. E., Ejike, O. G., Ewim, C. P., & Komolafe, M. O. (2022). A model for foreign direct investment (FDI) promotion through standardized tax policies in Nigeria. International Journal of Frontline Research in Science and Technology, 1(2), 53-66.

Okolo, F. C., Etukudoh, E. A., Ogunwole, O., Osho, G. O., & Basiru, J. O. (2022). Policy-Oriented Framework for Multi-Agency Data Integration Across National Transportation and Infrastructure Systems.

Okolo, F. C., Etukudoh, E. A., Ogunwole, O., Osho, G. O., & Basiru, J. O. (2022). Advances in Integrated Geographic Information Systems and AI Surveillance for Real-Time Transportation Threat Monitoring.

Olufemi-Phillips, A. Q., Ofodile, O. C., Toromade, A. S., Eyo-Udo, N. L., & Adewale, T. T. (2020). Optimizing FMCG supply chain management with IoT and cloud computing integration. International Journal of Management & Entrepreneurship Research, 6(11), 1-15.

Oyedokun, O. O. (2019). Green human resource management practices and its effect on the sustainable competitive edge in the Nigerian manufacturing industry (Dangote) (Doctoral dissertation, Dublin Business School).

Downloads

Published

11-05-2023

Issue

Section

Research Articles