

Original Article International Journal of Scientific Research in Civil Engineering

Available online at : **www.ijsrce.com**

© 2024 | IJSRCE | Volume 8 | Issue 1 | ISSN : 2456-6667

Analysis of a Tall Structure Considering Precast Hollow Flat and Pretensioning Slab Considering Lateral Load using ETABS

Ayush Goyal¹, Mahroof Ahmed², Kishor Patil³

P. G. Scholar¹, Associate Professor², Associate Professor³ Department of Civil Engineering, S.D.B.C. Indore, Madhya Pradesh, India

ARTICLEINFO ABSTRACT As the number of residential, commercial, and institutional buildings Article History: increases, a substantial portion of the national capital and construction Accepted: 01 Jan 2024 budget is allocated to the construction of concrete building structures. Published: 10 Ian 2024 Precast Hollow Core Slabs (HCS) have, however, proven to be more desirable than RCC slabs in recent years due to the demand for affordable and speedy construction, and they have been suggested as a feasible **Publication Issue** substitute for RCC slabs. This study presents a comparative examination of Volume 8, Issue 1 a G+9 story structure employing three different slab types: post tensioned January-February-2024 slab, precast hollow slab, and flat slab. All case studies are modeled and Page Number analyzed using the analytical program ETABS, and the outcomes are 104-118 compared with respect to the parameters of storey displacement, storey shear, and base Keywords : Precast Hollow Core Slab, Storey Drift , Story Shear, Lateral Displacement

I. INTRODUCTION

It is the underlying architect's liability to ensure that the fabricated climate can areas of strength for endure occasions like breeze, seismic tremors and traffic. All Manufacturers need to know how their assembled climate responds to these unique activities. An immediate aftereffect of tremors is that many individuals pass on from the breakdown of designs and rubble, and over the long haul, a large number of individuals lose their homes because of the breakdown of structures and the vulnerability and reproduction process and the designing division plan the immediate result of these program by better the seismic reaction of building designs and working ceaselessly to work on the seismic plan.

A construction moves horizontally and in an upward direction during a tremor because of surface ground movement driven on by seismic waves. In most cases, the ground is moving faster (ag) and has a significantly greater lateral motion than vertical motion. This horizontal movement makes the structure experience inertial powers, which are determined as the amount of the construction's mass (m) and speed increase (a). As indicated by Newton's Subsequent Regulation (Power = Mass x Accleartion). The fundamental factors that determine a structure's

response to an earthquake are its mass, size, and configuration.

Flat Slab

Drop panels are square slabs that have a one- or twosided support system and are referred to as "flat slabs." The slab's sheer force is concentrated on the supporting columns. Drop boards are vital in this present circumstance since they increment the general strength and limit of the ground surface framework underneath the upward loads while likewise working on the development's expense adequacy. Commonly, the level of drop boards is twofold that of the section.

For most of development projects as well as lopsided segment plans like bended or sloped floors, level pieces are viewed as reasonable. Applying level pieces has different advantages, remembering adaptability for plan course of action, level soffit, and profundity arrangements. Even though it can be expensive to build flat slabs, it gives architects and engineers a lot of freedom with their designs. The utilization of level pieces enjoys various benefits, not just regarding future plan and design viability yet in addition for the whole development process, especially for smoothing establishment out cycles and eliminating development time. Make the most of the thickness of flat slabs rather than drop panels by avoiding their use as much as possible. To keep up with the benefits of level soffits for the floor surface and to ensure that drop boards are given a role as a component of the section, this is important.

Fig 1 Flat Slab

II. LITERATURE REVIEW

Vanteddu Satwika and Mohit Jaiswal (2022) In the examination report, a level chunk was fortified utilizing the post tensioning methodology. Contrasting RCC level pieces with post-tensioned fat sections with different ligament profiles, both scattered and joined ligaments were utilized. The boundaries were assessed: thickness, supporting responses, punching shear, and diversion when contrasted with ordinary level chunks. The models were built as per ACI 318-14, and these piece models were created utilizing ETABS programming.

The outcomes demonstrate that post-tensioned level chunks have better punching shear limits even at more profound profundities, prompting segments that are all the more financially sound. Lower redirection is one more advantage of the consideration of ligaments.

Distributed tendons are more successful at reaching shallower depths than banded tendons. The posttensioned flat slab required fewer construction materials because there was less dead weight and fewer support responses. Subsequently, development costs are lower. Because of the lower support reaction for PT pieces, less segments and less support are expected for the parts that bear load from the chunks, for example, sections and establishments, which brings down the expense of development generally. A flat slab's punching shear strength can be increased even at shallower depths by employing the posttensioning method. This resolves one of the primary issues with the flat slab design. By including posttensioning ligaments, descending diversions can be altogether diminished, bringing about great functionality. The most proficient strategy, while considering the whole adequacy of the level piece, is the arrangement of scattered ligaments along with drop.

Dheekshith K and Prasad Naik (2021) research paper looked at the reaction of RCC section building and empty center piece under the seismic burden conditions for a G+9 story structure demonstrated utilizing insightful application ETABS considering shear walls on the sides. As empty center sections can't be straightforwardly demonstrated by ETABS, Optional Pillars were taken on with similar aspects as Empty Center Chunks. The empty center piece were displayed utilizing ANSYS(Investigation of Frameworks programming). Three models were assessed for each RCC working in Zones 3, 4, and 5 and for every normal roof structure.

Results expressed that story uprooting expanded for empty center chunk contrasted with RCC structure. Storey's hollow core slab building acceleration is lower in the X direction than that of the RCC building, but it is higher in the Y direction. When contrasted with RCC building, empty center section development takes less time and has less story float. Because the building is lighter, hollow core slab construction has a lower base shear than RCC construction.

Omar Ahmad (2021) In an exploration work, an expense examination of post-tensioned and built up substantial level sections was introduced. As per the

article, less concrete is required for post-pressure sections than for level chunks in light of the fact that the post-strain pieces are more slender and there are less segments given. A hydraulic jack extends the special steel tendons that were used in post-tensioned slabs after the concrete is cast, eliminating the need for reinforcement steel bars. Albeit just post-pressure chunks use ligaments, there is less steel utilized in post-strain sections than in level pieces. The expense of the worker for hire's work shifts relying upon whether a level section or a post-tensioned chunk is being constructed. The study compared the costs of concrete, steel, and contractor work.

The results of the comparison study between flat slabs made of reinforced concrete and post-tension slabs indicate that post-tension slabs are less expensive.

OBJECTIVES:

- To justify the utilization of hollow slab
- Modelling and analysis of structure using etabs
- To evaluate the performance of RCC and hollow core slabs adapt to seismic load conditions. To calculate the seismic zone IV responses of RCC slab frame buildings and hollow core slab buildings.

III. METHODOLOGY

Step 1: The research papers were reviewed which used different slab systems for structural stability. Step 2: Defining the grid system as per ETABS in x and y direction and preparing the plan of the structure for the structure storey data as G+9 storey structure is considered with typical storey height and bottom storey height is 3m.

Ayush Goyal et al Int J Sci Res Civil Engg. January-February-2024, 8 (1) : 104-118

Grid Dimensions (Plan)			Story Dimens	sions		
O Uniform Grid Spacing			Simple	e Story Data		
Number of Grid Lines in X Direction			Numb	per of Stories	10	
Number of Grid Lines in Y Direction			Туріс	al Story Height	3	m
Spacing of Grids in X Direction	[Botto	m Story Height	3	m
Spacing of Grids in Y Direction	[
Specify Grid Labeling Options		Grid Labels				
Custom Grid Spacing			O Custo	m Story Data		
Specify Data for Grid Lines		Edit Grid Data	Speci	ify Custom Story Data	E	dit Story Data
Image: state		H H H H	Fiat Slab	Flat Slab with	Waffle Slab	Two Way or

Fig 2 Model Template

Grid S	System Name –		Story	Range Option			Click to Modif	fy/Show:				
G				Derduit				Reference Points		6)@Ç	DEFO
Syster	m Origin			User Specified				Reference Planes		() ()		
Glo	obal X	0 n		Top Story			Options			<u>(</u>)		
Glo	obal Y	0 1		Bottom Story			Bubble Siz	ze 800	mm	(4)		
D	teller (•		Dottom Story			Cid Color			<u>_</u>	++	
lecta	angular Gride -											
) Display Grid	Data as Ordinates	0	Display Grid Data	a as Spaci	ina		[Quick	Start New Rectan	oular (arids
•) Display Grid	Data as Ordinates	0	Display Grid Data	a as Spaci	ing	V Grid Data	[Quick	Start New Rectan	gular (àrids
() () ()) Display Grid Grid Data	Data as Ordinates	0	Display Grid Data	a as Spaci	ing	Y Grid Data	[Quick	Start New Rectan	gular (àrids
• • × () Display Grid Grid Data Grid ID	Data as Ordinates X Ordinate (m)	Visible	Display Grid Data	a as Spaci	ing	Y Grid Data	Y Ordinate (m)	Quick Visible	Start New Rectan Bubble Loc	gular (ârids
() - X ()) Display Grid Grid Data Grid ID C	Data as Ordinates X Ordinate (m) 6	Visible Yes	Display Grid Data	a as Spaci	Add	Y Grid Data Grid ID 3	Y Ordinate (m) 6	Quick Visible Yes	Start New Rectan Bubble Loc Start	gular (Add
- X () Display Grid Grid Data Grid ID C D	Data as Ordinates X Ordinate (m) 6 9	Visible Yes Yes	Display Grid Data Bubble Loc End End	a as Spaci	Add Delete	Y Grid Data Grid ID 3 4	Y Ordinate (m) 6 9	Quick Visible Yes Yes	Start New Rectan Bubble Loc Start Start	gular (ârids Add Delete
• - x (Display Grid Grid Data Grid ID C D E 	Data as Ordinates X Ordinate (m) 6 9 12	Visible Yes Yes Yes	Display Grid Data	a as Spaci	Add Delete	Y Grid Data Grid ID 3 4 5 6	Y Ordinate (m) 6 9 12	Quick Visible Yes Yes Yes	Start New Rectan Bubble Loc Start Start Start	gular (Add Delete
• - X () Display Grid Grid Data Grid ID C D E F	X Ordinates X Ordinate (m) 6 9 12 15 18	Visible Yes Yes Yes Yes	Display Grid Data Bubble Loc End End End End	a as Spaci	Add Delete	Y Grid Data Grid ID 3 4 5 6 7	Y Ordinate (m) 6 9 12 15 18	Quick Visible Yes Yes Yes Yes	Start New Rectan Bubble Loc Start Start Start Start	gular (Add Delete
-×() Display Grid Grid Data Grid ID C D E F G	X Ordinates X Ordinate (m) 6 9 12 15 15 18	Visible Yes Yes Yes Yes Yes	Display Grid Data Bubble Loc End End End End End	a as Spaci	Add Delete Sort	Y Grid Data Grid ID 3 4 5 6 7	Y Ordinate (m) 6 9 12 15 18	Quick Visible Yes Yes Yes Yes	Start New Rectan Bubble Loc Start Start Start Start Start Start	gular (Add Delete Sort
• -x() Display Grid Grid Data Grid ID C D E F G	X Ordinates X Ordinate (m) 6 9 12 15 15 18	Visible Yes Yes Yes Yes Yes	Display Grid Data	a as Spaci	Add Delete Sort	Y Grid Data Grid ID 3 4 5 6 7	Y Ordinate (m) 6 9 12 15 18	Quick Visible Yes Yes Yes Yes	Start New Rectan Bubble Loc Start Start Start Start Start Start	gular (Add Delete Sort
) Display Grid Grid Data Grid ID C D E F G	Data as Ordinates X Ordinate (m) 6 9 12 15 15 18	Visible Yes Yes Yes Yes Yes	Display Grid Data Bubble Loc End End End End End	a as Spaci	Add Delete Sort	Y Grid Data Grid ID 3 4 5 6 7	Y Ordinate (m) 6 9 12 15 18	Quick Visible Yes Yes Yes Yes	Start New Rectan Bubble Loc Start Start Start Start Start Start	gular (Add Delete Sort

Fig 3 Grid System Data

Step	3:	Defining	material	pro	perties	of co	olumn.	beam	and slabs	5.
o e e e e	۰.			P ~ ~	perereo.	· · ·	orann,			

Material Property Data				
General Data				
Material Name	M30			
Material Type	Concrete		\sim	
Directional Symmetry Type	Isotropic		\sim	
Material Display Color		Change		
Material Notes	Modi	fy/Show Notes		
Material Weight and Mass				
Specify Weight Density		ecify Mass Density		
Weight per Unit Volume		24.9926	kN/m³	
Mass per Unit Volume		2548.538	kg/m³	
Mechanical Property Data				
Modulus of Elasticity, E		27386.13	MPa	
Poisson's Ratio, U		0.2		
Coefficient of Thermal Expansion,	A	0.0000055	1/C	
Shear Modulus, G		11410.89	MPa	
Design Property Data				
Modify/Show	w Material Propert	y Design Data]	
Advanced Material Property Data				
Nonlinear Material Data		Material Damping P	roperties	
Time	e Dependent Prop	erties		
OK		Capaci		
ОК		Cancel		

Fig 4 Material Properties for Concrete

General Data			
Material Name	Tendon		
Material Type	Tendon		\sim
Directional Symmetry Type	Uniaxial		
Material Display Color		Change	
Material Notes	Mod	fy/Show Notes	
Material Weight and Mass			
Specify Weight Density	O Spe	ecify Mass Density	
Weight per Unit Volume		76.9729	kN/m³
Mass per Unit Volume		7849.047	kg/m³
Mechanical Property Data			
Modulus of Elasticity, E		196500.6	MPa
Coefficient of Thermal Expansion, A		0.0000117	1/C
Design Property Data			
Modify/Show M	laterial Propert	y Design Data]
Advanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Time D	lependent Prop	perties	
	_		

Fig 5 Material Properties for Tendons

Ayush Goyal et al Int J Sci Res Civil Engg. January-February-2024, 8 (1) : 104-118

eneral Data			
Material Name	HYSD415		
Material Type	Rebar		\sim
Directional Symmetry Type	Uniaxial		
Material Display Color		Change	
Material Notes	Modi	fy/Show Notes	
aterial Weight and Mass			
Specify Weight Density	O Spe	ecify Mass Density	
Weight per Unit Volume		76.9729	kN/m³
Mass per Unit Volume		7849.047	kg/m³
echanical Property Data			
Modulus of Elasticity, E		200000	MPa
Coefficient of Thermal Expansion	. A	0.0000117	1/C
esign Property Data			
Modify/Sho	w Material Propert	y Design Data]
dvanced Material Property Data			
Nonlinear Material Data		Material Damping Pr	roperties
Tim	e Dependent Prop	perties	

Fig 6 Material Property Data for Rebar

Step 4 Defining sections properties for the size of column, beams and slab.

General Data			
Property Name	beam		
Material	M30	~	2
Notional Size Data	Modify/Show Notional Size		3 • •
Display Color	Change		< <u></u>
Notes	Modify/Show Notes		• •
Shape			•••
Section Shape	Concrete Rectangular	~	
Section Property Source			
Source: User Defined			Property Modifiers
Parting Dimensions			Modify/Show Modifiers
Death	100	_	Currently Default
Depth	400		Reinforcement
Width	200	mm	Modify/Show Rebar
			OK
			Cancel

Fig 7 Section Properties for Beam

Jerieral Data		
Property Name	column	
Material	M30 ~ 2	•
Notional Size Data	Modify/Show Notional Size	•
Display Color	Change	•
Notes	Modify/Show Notes	•
Shape	• •	•
Section Shape	Concrete Rectangular V	
Section Property Source		
Source: User Defined	Property Modifiers	
Section Dimensions	Modify/Show	Modifiers
Depth	400 mm	Default
Width	400 mm	
	Modify/Show	w Rebar
	0	к

Fig 8 Defining section properties of beam and column.

		Frame Sectio	n Property	Reinforcemer	nt Data
--	--	--------------	------------	--------------	---------

P-M2-M3 Design (Column)	Rebar Material	l Barra	HVCDA			
M3 Design Only (Beam)	Confinemen	nt Bars (Ties)	HYSD415			×
einforcement Configuration	Confinement B	ars	Check/	Desig	jn	
 Rectangular 	Ties		OF	Reinfo	rcement to be Ch	ecked
🔿 Circular	 Spirals 		() F	 Reinforcement to be Designed 		
ongitudinal Bars						
Clear Cover for Confinement Bars					40	mm
Number of Longitudinal Bars Along 3	-dir Face				3	
Number of Longitudinal Bars Along 2	-dir Face				5	
Longitudinal Bar Size and Area		20	\sim		314	mm²
Corner Bar Size and Area		20	\sim		314	mm²
onfinement Bars						
Confinement Bar Size and Area		10	~		79	mm²
Longitudinal Spacing of Confinement	Bars (Along 1-Axis)				150	mm
Number of Confinement Bars in 3-dir					3	
Number of Confinement Bars in 2-dir					3	
	OK	Cance	-1			
	UK	Cance	51			

Fig 9 Frame Section Property Reinforcement Data

Х

Overbange		Structural System Proportion		
overnangs		Structural System Properties		
Along X Direction		Column	ConcCol	~
Left Edge Distance	0.3 m	Slab	Slab1	\sim
Right Edge Distance	0.3 m	5		
		Urop	Drop1	~
Along Y Direction				
Top Edge Distance	0.3 m			
Bottom Edge Distance	0.3 m			
Drop Panels		Load		
Drop Panels		Dead Load Pattern	Dead	\sim
Size	3 m	Dead Load (Additional)	0	kN/m²
Post Tensioning		Live Load Pattern	Live	\sim
Add P/T	P/T Data	Live Load	0	kN/m²
Restraints at Bottom		Floor Diaphragm Rigidity		
○ None ● Pinned	○ Fixed	Rigid	Semi-Rigid O N	o Diaphragm

Step 5 Defining Properties of Slab Data

Fig 10 Structural Geoemtry and Properties for Flat Slab

Step 6: Defining Loading pattern for dead load, live load and earthquake load.

oads		0.000		Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
Dead	Dead	 ✓ 1 	~	Modify Load
Dead	Dead	1		
Live ea x	Seismic	0	IS1893 2002	Modify Lateral Load
eq y	Seismic	ō	151893 2002	Delete Load

Fig 11 Load Pattern

Neismic Load Pattern - Ind	ian IS1893:2002			×
Direction and Eccentricity X Dir X Dir + Eccentricity X Dir - Eccentricity Ecc. Ratio (All Diaph.) Overwrite Eccentricities	 Y Dir Y Dir + Eccentricity Y Dir - Eccentricity 0.05 Overwrite 	Seismic Coefficients Seismic Zone Factor, Z Per Code User Defined Site Type Importance Factor, I	0.24 ~ ~ 1.2	
Story Range Top Story Bottom Story Factors Response Reduction, R	Story10 ~ Base ~ 5	Time Period Approximate Program Calculated User Defined OK	Ct (m) =se	;C

Fig 12 Defining Seismic Load Pattern as per IS 1893:2002.

Fig 13 Response Spectrum Function as per IS 1893:2002.

Step 7 Analysing the structure on the parameters of displacement, drift and stiffness.

Fig 14 Stress Analsyis

Fig 15 Dead Load

Fig 16 Concrete Slab Stress

Step 8 Sumamrizing the results generated from ETABS for all the three cases and presenting the graphical representation as per the tabulated data.

Table 1 Building Configuration

Building Description			
Description	Values		
Building size	18*15 m		
Number of storeys	G+9		
Height of Storeys	3m		
Bottom Storey Height	3m		
Beam	400*200mm		
Column	400*400mm		
Flat Slab	210mm		
Post Tensioned Slab	200mm		
Precast Hollow Slab	175mm		

IV. ANALYSIS RESULT

V. CONCLUSIONS

It was analyzed that PT piece firmness is a lot of productive in contrast with Level chunk outline framework and Precast Empty Section outline in decreasing second, story removal, displacement

Displacement:

The lateral force-resisting system can control the building's excessive lateral movement. The satisfactory sidelong removal limit on account of a breeze load is H/500 (yet certain individuals might utilize H/400). Story removal was found most extreme at the popular narrative story in structure with Level section 1349.921 mm when contrasted with structure with precast empty piece 1167.116 mm and 1154.216 mm which expresses that story uprooting was story relocation was 8% more when contrasted with Case II and 9% more when contrasted with case III. As far as dislodging it very well may be reasoned that PT piece structure is relatively more steady 25% less relocation when contrasted with RCC Level section structure.

Axial Force:

The power working on a design in its hub bearing is known as a hub strain force. The body will extend straightly in the vertical course because of the pulling force, changing its aspect. Most extreme pressure was apparent at the lower part of the design with 23200.987 KN Level chunk. The design with post tensioned chunk was viewed as especially stable when contrasted with structure with precast empty piece and construction with Level Section. One might say that upward dispersion is by and large same in both the cases. Variety of 8% is seen in PT piece as it is really opposing and circulating.

Shear force: similar to the tension of wind stream over a plane wing, is a power that demonstrations toward a path that is lined up with (over) a surface or cross segment of a body. "Shear" in the term alludes to the capacity of such a power to slice through the surface or item that is being extended. Shear force was greatest at base in structure with Post tensioned piece which diminished continuously at the popular narrative. Shear force was tracked down least in the design with level piece. As far as unbalance compels it was seen that unbalance powers are straight in every one of the three cases, and values on PT section case is on the better quality with rough variety of 5%.

Bending Moment:

When an outside power or second is applied to a primary component, making it twist, the component answers by encountering a bowing

second. The bar is the underlying part that is twisted the most often or basically. Twisting second was most extreme in structure with Level section though bowing second was tracked down stable in structure with Precast Empty piece and design with Post Tensioned chunk. As far as bowing second it is seen that Pt section structure is relatively more prudent and stable design since finishing second noticed is less by 15%.

Future Scope

- The building can be compared to post-tensioned slab construction techniques.
- the behaviour of structures in various seismic zones and the behaviour of buildings with flat slabs and drops.

The effect of the shear wall on the structure can be examined.

VI. REFERENCES

- [1]. Supriya T J and Praveen J V, [Use of Precast Hollow Core Slabs in High Rise Buildings], International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 3 Issue 10, October- 2014.
- [2]. Umamaheswara Rao Tallapalem, Shaik Nurulla and Srinivasa rao allu, [Time History Analysis on Precast Building Connections], International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-4, November 2019.
- [3]. E. Michelini, P. Bernardi, R. Cerioni and B. Belletti, [Experimental and Numerical Assessment of Flexural and Shear Behavior of Precast Prestressed Deep Hollow-Core Slabs], International Journal of Concrete Structures and Materials, 2020.
- [4]. Renee A Lindsay, John B Mander and Des K Bull, [EXPERIMENTS ON THE SEISMIC PERFORMANCE OF HOLLOW-CORE

FLOOR SYSTEMS IN PRECAST CONCRETE BUILDINGS], 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 585.

- [5]. Dheekshith K and Prasad Naik, [LINEAR DYNAMIC ANALYSIS OF HOLLOW CORE SLAB AND RCC SLAB OF MULTI-STOREY BUILDING], International Research Journal of Engineering and Technology (IRJET), Volume: 08 Issue: 07 | July 2021.
- [6]. Omar Ahmad, [Financial comparative study between post-tensioned and reinforced concrete flat slab], International Journal of Advanced Engineering, Sciences and Applications (IJAESA), ISSN: 2703-7266, 2021.
- [7]. Prasad Bhamare, Sagar Bhosale, Akshay Ghanwat, Shubham Gore, Sheetal Jadhv and Sachin Patil, [COMPARE PARAMETERS OF RCC AND PRESTRESSED STRUCTURES], International Journal of Advance research in Science and Engineering, Vol.no.6, Issue no. 4, April 2017.
- [8]. Kamal Amin Chebo, Yehya Temsah, Zaher Abou Saleh, Mohamad Darwich and Ziad Hamdan, [Experimental Investigation on the Structural Performance of Single Span Hollow Core Slab under Successive Impact Loading], Materials 2022, 15, 599.
- [9]. Soubhagya Ranjan Rath, Susanta Kumar Sethy and Mukesh Kumar Dubey, [Comparative Study on Analysis and Designing of PostTensioned Flat Slab Vs Conventional Slab], International Journal of Research in Advent Technology, Vol.7, No.5, May 2019 E-ISSN: 2321-9637.
- [10]. V. G. Mutalik Desai and Mohammad J. Shaikh, [Comparative Analysis of Flat Slab and Post-Tensioned Flat Slab Using SAFE], International Advanced Research Journal in Science, Engineering and Technology, Vol. 3, Issue 8, August 2016.

- [11]. Jay Vekariya, Dr. Deepa Sinha and Bhavin Sheladiya, [Comparative Study of a Post Tensioned Flat Slab with Post Tensioned Voided Flat Slab], Journal of Emerging Technologies and Innovative Research (JETIR), November 2018, Volume 5, Issue 11.
- [12]. Mohammed Imran, M. Visweswara Rao and Dr. Jammi Ashok, [A Comparative Study of Flat Slab Vs Post Tensioned Flat Slab], International Journal for Scientific Research & Development| Vol. 5, Issue 09, 2017.

Cite This Article :

Ayush Goyal, Mahroof Ahmed, Kishor Patil, "Analysis of a Tall Structure Considering Precast Hollow Flat and Pretensioning Slab Considering Lateral Load using ETABS", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 8, Issue 1, pp.104-118, January-February.2024 URL : https://ijsrce.com/IJSRCE24818

