

# Seismic Analysis of Flat Slab Structure Using ETABS Software

Aayush Awasthi<sup>1</sup>, Rahul Satbhaiya<sup>2</sup>

P.G. Scholar<sup>1</sup>, Assistant Professor<sup>2</sup>

Department of Civil Engineering, Infinity Management & Engineering College, Madhya Pradesh, India

#### ABSTRACT ARTICLEINFO Civil Engineers are facing a great challenge in structural designing. The Article History: design must fulfil various parameters which include economical structure, Accepted: 05 April 2023 durability and serviceability. But taking these points in mind it becomes Published: 12 April 2023 very difficult for an Engineer to fulfil all these requirements at a time when a design is performed manually. This digital tool used in civil engineering and comparing their results by taking in mind the **Publication Issue** requirements of the above points. In this research process a building is Volume 7, Issue 2 taken for analysis and design on well-known Software ETABS. March-April-2023 Due to the freedom of space design, quicker construction time, architectural functionality, and economic factors, flat-slab building designs Page Number have significant advantages over typical slab-beam-column systems. The 129-146 lack of deep beams and shear walls makes flat-slab structural systems far more flexible for lateral stresses than standard RC frame systems, which increases the system's susceptibility to seismic occurrences. The critical moment in design of these systems is the slab-column connection, i.e., the shear force in the slab at the connection, which should retain its bearing capacity even at maximal displacements. In this study we are comparing a G+10 High rise building frame considering three different slab conditions i.e. conventional slab, flat slab and flat slab with staggered beams. For analysis we are utilizing analysis tool etabs.

**Keywords:** Response Spectrum Analysis, Flat Slab, Flat Slab with Perimeter Beam, ETABS , story displacement, story stiffness, story drift, time period.

### I. INTRODUCTION

The building codes permit performance-based style, but there isn't a lot of particular guidance. Numerous necessary guiding principles for the shaky design of tall buildings have recently been published in distinct styles. These focuses advance the usage of various kind of burden refusal embracement which was not out there for the plan in the plan local area. Parallel burdens as a result of wind and quake supervises the design rather than the upward loads.

**Copyright:** © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

129

The developments made to help vertical burdens probably won't have the option to help side burdens. The justification for why sidelong loads are more huge and increment rapidly with level than vertical loads that would be supposed to increment straightforwardly with height is on the grounds that they are flat. The disrupting second at the foundation of a design so tall is huge and changes comparable to the square under a consistent breeze and tremor stacks. A structure will normally work as a cantilever on the grounds that the level burdens are excessively weighty at the popular narrative contrasted with the establishment story. These equal powers will in everyday impact the packaging. Neither in an extensive part of the seismic slanted regions there are a couple of instances of dissatisfaction of designs which are nor been planned f0r quake loads. This all reaction has examination of effect of the sidelong burden huge.

### 1.2 Reinforced Concrete Slab System

Buildings' flat surfaces (floors and ceilings) are provided by reinforced concrete slabs, which are an essential structural component. Slabs are typically divided into one-way slabs and two-way slabs depending on the reinforcement that is present, the support provided by the beam, and the ratio of the spans. The former is supported on two sides, and there is a greater than two-to-one ratio between the long and short spans. The latter, however, is supported on four sides and has a shorter long to short span ratio than two.

Regarding the type of building, architectural arrangement, aesthetic elements, and span length, various variables and requirements call for the selection of an acceptable and affordable concrete slab. Concrete slabs, therefore, are further classified into one-way joist slab, flat slab, flat plate, waffle slab, hollow core slab, precast slab, slabs on grade, hardy slab, and composite slab.

### Seismic Loading on Multi Storey Structure

The purpose of seismic analysis is to identify the various earthquake responses of buildings and to decide whether to adapt existing structures. For earthquake-prone regions like Japan, the North-East of India, Nepal, the Philippines, and many others, it is a crucial instrument. When designing RCC building components such beams, columns, and slabs in compliance with IS 13920:2016, this type of analysis is crucial. The load carrying ability, ductility, wetness, stiffness, and mass of the dynamic seismic forces are tested. Multi-story buildings are seismically analysed using IS 1893:2016.

### Objectives behind the research

- To determine the behaviour of high rise building frame under seismic load as per I.S. 1893-I:2016
- To determine the effectiveness of flat slab in comparison with conventional grid slab.
- To determine the utilization of etabs software in analysis of high rise RCC building structure.
- To provide comparative analysis results of conventional, flat slab and flat slab with staggered beam structure in terms of forces, moment, displacement and drift.

### II. Review of Literature Survey

**Denis K, Mateng'e and Manu SE (2022)** In a study, the seismic behaviour of multistory buildings for flat slab constructions with variously shaped drop panels was examined. Using the dynamic analytical method, slabs with rectangular and square drop panels were examined under earthquake stresses. Using ETAB's software, square flat slab buildings with plan areas of 28m x 28m were modelled and assessed for earthquake zones III and IV. Storey drift, displacement, and base shear were the parameters employed to assess the seismic behaviour.

Results stated that displacement in the flat slab with a rectangular drop panel structure was more than that of the structure with square shaped drop panel by



69.61% at the top story and 28.78% at the bottom story for seismic zone III. In seismic zone IV the displacement of the structure with rectangular drop panel was more than that of the structure with square drop panel with the same percentage however the values for this zone were higher. The story drift for the structure with rectangular drop panels was more than that of the structure with square drop panels by 88.40% at the top story and 28.78% at the bottom story. The base shear and story shears was more for the building with square drop panels than that with rectangular drop panels.

Manish Kumar Pandey and Dr. Raghvendra Singh (2021) objective of the research paper was to investigate the behavior of different types of slab and secondary beam in a structure considering a G+10 multistory building taking different variations on slabs and introducing a secondary beam in the structure. RSA (Response Spectrum Analysis) was used for the analysis of model on parameters of Storey displacement, base shear, overturning moments and storey shears. Results stated that most preferable long span slab was building with waffle or ribbed slab.

Nitish A. Mohite et.al (2021) in the research paper, Using CSI ETABS software version 2016, threedimensional analytical models of G+20 storey buildings were created and examined. A G+20 story structure with a flat slab (with drops) and conventional slab system was analysed and designed while taking seismic zone III into consideration. The structures were designed and analysed using the equivalent static method in accordance with the Indian Standard Code for earthquake-resistant structures, and comparisons were made based on factors such story drift, story displacement, story stiffness, and time period.

Results stated that that story drift was 10% more in conventional slab as compared to flat slab; story displacements was observed linearly increasing with height of the building and was 11% more in conventional slab as compared to flat slab.

**Shital Borkar et.al (2021)** The primary motive of research was to analyze the seismic behaviour of different types of slab structures i.e. Flat slab structure, conventional slab structure, flat slab structure with drop under different earthquake zones considering G+5 storey building using ETAB software. Author also analyzed a comparison of behavior of flat bit of material building with old common 2 way bit of material system for different bands, parts like band, part zone-II, part zone-III, part zone-IV, part zone-V in respect with the greatest point making bent moment.

According to the findings, for both regular and irregular structures, the storey displacement was greatest in flat systems and lowest in typical slab systems throughout the seismic zone. For both regular and irregular structures, story shear was greatest in the flat slab system and lowest in the flat slab with drop system across the seismic zone.

#### III. METHODOLOGY

### Steps involved in the Analysis

Step 1- Firstly research papers from different authors were studied to identify the scope of research and have an elaborate study about the research done till date. Authors have studied the structure behaviour with change in size of column and this led us to identify the research topic as such research are still untouched for high rise structures.

Step 2: The first step is to define the units in ETABS for the purpose of modelling. Here the display units as metric SI and the further values are defined as per the Indian standards for different material involved in the process of construction. The pre-defined properties as per the categories are defined in the software where the different country codes are available as ASI standards, Chinese standards, Indian standards and Australian standards.



| Initialization Options | Jser Default Settings |             | 0           |
|------------------------|-----------------------|-------------|-------------|
|                        | from a Model File     |             | 0           |
| Use Built-in \$        |                       |             | Ŭ           |
| Display I              | Jnits                 | Metric SI   | ~ <b>()</b> |
| Steel Se               | ction Database        | Indian      | $\sim$      |
| Steel De               | sign Code             | IS 800:2007 | ~ ()        |
| Concrete               | e Design Code         | IS 456:2000 | ~ ()        |

Fig 1 Model Initialization

Step 3: This step involves defining the grid as ETABS provides the provision to choose from the predefined grid system proving its ease for modelling the structure.

| Grid Dimensions (Plan)                  |                  |                                         |                 | Story Dimen | sions                             |            |                           |
|-----------------------------------------|------------------|-----------------------------------------|-----------------|-------------|-----------------------------------|------------|---------------------------|
| <ul> <li>Uniform Grid Spacin</li> </ul> | g                |                                         |                 | O Simpl     | le Story Data                     |            |                           |
| Number of Grid Line                     | s in X Direction |                                         | 5               | Num         | ber of Stories                    | 10         |                           |
| Number of Grid Line                     | s in Y Direction |                                         | 5               | Турі        | cal Story Height                  | 3          | m                         |
| Spacing of Grids in                     | X Direction      |                                         | 4               | Botto       | om Story Height                   | 3          | m                         |
| Spacing of Grids in                     | Y Direction      |                                         | 4m              |             |                                   |            |                           |
| Specify Grid Labelin                    | g Options        |                                         | Grid Labels     |             |                                   |            |                           |
| O Custom Grid Spacin                    | 9                |                                         |                 | O Custo     | om Story Data                     |            |                           |
| Specify Data for Gri                    | d Lines          |                                         | Edit Grid Data  | Spec        | cify Custom Story Data            | 1          | dt Story Data             |
| Add Structural Objects                  |                  | I н I<br>I н I<br>I н I<br>I Steel Deck | Staggered Truss | Flat Slab   | Flat Slab with<br>Perimeter Beams | Waffe Slab | Two Way or<br>Ribbed Slab |
| Blank                                   | Grid Only        |                                         |                 |             |                                   |            |                           |

Fig 2 Model Quick Template

Step 4: Defining material properties for concrete, steel, infill and rebar. In this study, M30 concrete is considered along with HYSD415 rebar.



| Material Name                              | M30                              |                    |            |  |
|--------------------------------------------|----------------------------------|--------------------|------------|--|
| Material Type                              | Concrete                         |                    | ~          |  |
| Directional Symmetry Type                  | Isotropic                        |                    | ~          |  |
| Material Display Color                     | Material Display Color           |                    |            |  |
| Material Notes                             | Material Notes Modify/Show Notes |                    |            |  |
| Material Weight and Mass                   |                                  |                    |            |  |
| <ul> <li>Specify Weight Density</li> </ul> | O Spr                            | ecify Mass Density |            |  |
| Weight per Unit Volume                     |                                  | 24.9926            | kN/m³      |  |
| Mass per Unit Volume                       |                                  | 2548.538           | kg/m³      |  |
| Mechanical Property Data                   |                                  |                    |            |  |
| Modulus of Elasticity, E                   |                                  | 27386.13           | MPa        |  |
| Poisson's Ratio, U                         |                                  | 0.2                |            |  |
| Coefficient of Thermal Expansion,          | A                                | 0.000013           | 1/C        |  |
| Shear Modulus, G                           |                                  | 11410.89           | MPa        |  |
| Design Property Data                       |                                  |                    |            |  |
| Modify/Show                                | Material Propert                 | y Design Data      |            |  |
| Advanced Material Property Data            |                                  |                    |            |  |
| Nonlinear Material Data                    |                                  | Material Damping F | Properties |  |
| Time                                       | Dependent Prop                   | erties             |            |  |
| Modulus of Rupture for Cracked Defle       | ections                          |                    |            |  |
| Program Default (Based on Collection)      | oncrete Slab Des                 | ign Code)          |            |  |
| O User Specified                           |                                  |                    |            |  |

Fig 3 Concrete Property

| General Data                               |                   |                     |          |  |
|--------------------------------------------|-------------------|---------------------|----------|--|
| Material Name                              | HYSD415           |                     | _        |  |
| Material Type                              | Rebar             |                     | $\sim$   |  |
| Directional Symmetry Type                  | Uniaxial          |                     |          |  |
| Material Display Color                     | Change            |                     |          |  |
| Material Notes                             | Mo                | Modify/Show Notes   |          |  |
| Material Weight and Mass                   |                   |                     |          |  |
| <ul> <li>Specify Weight Density</li> </ul> | () S              | pecify Mass Density |          |  |
| Weight per Unit Volume                     |                   | 76.9729             | kN/m³    |  |
| Mass per Unit Volume                       |                   | 7849.047            | kg/m³    |  |
| Mechanical Property Data                   |                   |                     |          |  |
| Modulus of Elasticity, E                   |                   | 200000              | MPa      |  |
| Coefficient of Thermal Expansio            | n, A              | 0.0000117           | 1/C      |  |
| Design Property Data                       |                   |                     |          |  |
| Modify/Sh                                  | ow Material Prope | rty Design Data     |          |  |
| Advanced Material Property Data            |                   |                     |          |  |
| Nonlinear Material Data                    |                   | Material Damping Pr | operties |  |
| Tir                                        | me Dependent Pro  | operties            |          |  |

Fig 4 Rebar Property

| General Data                     |                                     |                    |           |
|----------------------------------|-------------------------------------|--------------------|-----------|
| Material Name                    | Fe345                               |                    | _         |
|                                  |                                     |                    |           |
| Material Type                    | Steel                               |                    | ~         |
|                                  | Directional Symmetry Type Isotropic |                    |           |
| Material Display Color           |                                     | Change             |           |
| Material Notes                   | Modi                                | y/Show Notes       |           |
| Material Weight and Mass         |                                     |                    |           |
| Specify Weight Density           | 🔘 Spe                               | cify Mass Density  |           |
| Weight per Unit Volume           |                                     | 76.9729            | kN/m³     |
| Mass per Unit Volume             |                                     | 7849.047           | kg/m³     |
| Mechanical Property Data         |                                     |                    |           |
| Modulus of Elasticity, E         |                                     | 210000             | MPa       |
| Poisson's Ratio, U               |                                     | 0.3                |           |
| Coefficient of Thermal Expansion | . A                                 | 0.0000117          | 1/C       |
| Shear Modulus, G                 |                                     | 80769.23           | MPa       |
| Design Property Data             |                                     |                    |           |
| Modify/Sho                       | w Material Property                 | / Design Data      | ]         |
| Advanced Material Property Data  |                                     |                    |           |
| Nonlinear Material Data          |                                     | Material Damping P | roperties |
| Tim                              | e Dependent Prop                    | erties             |           |
|                                  |                                     |                    |           |

### Fig 5 Properties of Steel

Step 5 Defining sections properties for column, beam 400x300mm and slab.

| Property Name           | beam                    |                 | _  |                       |
|-------------------------|-------------------------|-----------------|----|-----------------------|
| Material                | M30                     |                 | ×  | 2                     |
| Notional Size Data      | Modify/Show             | v Notional Size |    | 3                     |
| Display Color           |                         | Change          |    | < <del>&lt;</del> + ● |
| Notes                   | Modify/S                | how Notes       |    | • •                   |
| Shape                   |                         |                 |    | • • •                 |
| Section Shape           | Concrete Rectan         | gular           | ×  |                       |
| Section Property Source |                         |                 |    |                       |
| Source: User Defined    |                         |                 |    | Property Modifiers    |
| Section Dimensions      |                         |                 |    | Modify/Show Modifiers |
| Depth                   |                         | 400             | mm | Currently Default     |
|                         |                         |                 |    | Reinforcement         |
| Width                   |                         | 300             | mm | Modify/Show Rebar     |
|                         |                         |                 |    | OK                    |
|                         | Show Section Properties |                 |    | Cancel                |
|                         |                         |                 |    |                       |

# Fig 6 Section properties of beam

| eneral Data                                                                                                     |               |                   |    |                       |
|-----------------------------------------------------------------------------------------------------------------|---------------|-------------------|----|-----------------------|
| Property Name                                                                                                   | column        |                   |    |                       |
| Material                                                                                                        | M30           |                   | ×  | 2 2                   |
| Notional Size Data                                                                                              | Modify/Sh     | now Notional Size |    |                       |
| Display Color                                                                                                   |               | Change            |    | ● → ●                 |
| Notes                                                                                                           | Modify        | /Show Notes       |    | • •                   |
| hape                                                                                                            |               |                   |    |                       |
| Section Shape                                                                                                   | Concrete Rect | angular           | Y  |                       |
| ection Property Source                                                                                          |               |                   |    |                       |
| Source: User Defined                                                                                            |               |                   |    | Property Modifiers    |
| ection Dimensions                                                                                               |               |                   |    | Modify/Show Modifiers |
| Depth                                                                                                           |               | 400               | mm | Currently Default     |
| Width                                                                                                           |               | 400               | mm | Reinforcement         |
| The second se |               | 400               |    | Modify/Show Rebar     |
|                                                                                                                 |               |                   |    |                       |
|                                                                                                                 |               |                   |    |                       |
|                                                                                                                 |               |                   |    |                       |
|                                                                                                                 |               |                   |    | OK                    |
|                                                                                                                 |               |                   |    |                       |

Fig 7 Section Properties of Column 400x400mm

| neral Data                    |            |                 |     |     |
|-------------------------------|------------|-----------------|-----|-----|
| Property Name                 | Slab2      |                 |     |     |
| Slab Material                 | M30        |                 | ~   | ] [ |
| Notional Size Data            | Modify     | Show Notional S | ize |     |
| Modeling Type                 | Shell-Thin |                 | ~   |     |
| Modifiers (Currently Default) |            | Modify/Show     |     |     |
| Display Color                 |            | Chang           | e   |     |
| Property Notes                |            | Modify/Show     |     |     |
| Type<br>Thickness             | Slab       | 150             | ~   | mm  |
| Thickness                     |            | 150             |     | mm  |
|                               |            |                 |     |     |
|                               |            |                 |     |     |

Fig 8 Section Properties of Conventional Slab

| Aav | rush Awasthi et al | Int J Sci Re | s Civil Engg | . March-A | pril-2023, | 7(2):   | 129-146 |
|-----|--------------------|--------------|--------------|-----------|------------|---------|---------|
|     |                    |              |              |           | ,          | - (-/ - |         |

| Overhangs                    |               |              | Drop Panel Dimensions    |             |                   |
|------------------------------|---------------|--------------|--------------------------|-------------|-------------------|
| Along X Direction            |               |              | Include Drop Panels      |             |                   |
| Left Edge Distance           | 0.3           | m            | Drop Panel Size (square) | 3           | m                 |
| Right Edge Distance          | 0.3           | m            | Drop Panel Thickness     | 350         | mm                |
| Along Y Direction            |               |              | Post Tensioning          |             |                   |
| Top Edge Distance            | 0.3           | m            | Add P/T                  | P/T Data    |                   |
| Bottom Edge Distance         | 0.3           | m            | Load                     |             |                   |
|                              |               |              | Dead Load Pattern        | Dead ~      |                   |
| Structural System Properties |               |              | Dead Load (Additional)   | 1           | kN/m <sup>2</sup> |
| Slab Thickness               | 150           | mm           | Live Load Pattern        | Live ~      |                   |
| Column Size (square)         | 400           | mm           | Live Load                | 4           | kN/m²             |
| Model Column Intersection    | as Stiff Slab |              | Restraints at Bottom     | red O Fixed |                   |
| Roor Diaphragm Rigidity      |               |              |                          |             |                   |
| Rigid     Semi-f             | Rigid O       | No Diaphragm |                          |             |                   |

Fig 9 Structural Geometry and Properties for Flat Slab

|                             |               |    | Beam Dimensions<br>X-Direction Beams |          |                |
|-----------------------------|---------------|----|--------------------------------------|----------|----------------|
| Along X Direction           |               |    | Depth                                | 400      | mm             |
| Left Edge Distance          | 0.15          | m  | Web Width                            | 300      | mm             |
| Right Edge Distance         | 0.15          | m  | Y-Direction Beams                    |          |                |
| Along Y Direction           |               |    | Depth                                | 400      | mm             |
| Top Edge Distance           | 0.15          | m  | Web Width                            | 300      | mm             |
| Bottom Edge Distance        | 0.15          | m  |                                      |          |                |
|                             |               |    | Load                                 |          |                |
| tructural System Properties |               |    | Dead Load Pattern                    | Dead     | ~              |
|                             |               |    | Dead Load (Additional)               | 1        | kN/m²          |
| Slab Thickness              | 150           | mm | Live Load Pattern                    | Live     | ~              |
| Column Size (square)        | 400           | mm | Live Load                            | 4        | kN/m²          |
| Model Column Intersection a | is Stiff Slab |    | Restraints at Bottom                 |          |                |
|                             |               |    | O None O F                           | Pinned   | Fixed          |
| Prop Panel Dimensions       |               |    | Roor Diaphragm Rigidity              |          |                |
| 🛃 Include Drop Panels       |               |    | Rigid O Ser                          | ni-Rigid | O No Diaphragm |
| Drop Panel Size (square)    | 3             | m  |                                      |          |                |
| Drop Panel Thickness        | 350           | mm |                                      |          |                |

Fig 10 Geometrical Properties of Flat Slab with Perimeter beam



Step 6 Assigning Fixed Support at bottom of the structure for X, Y and Z-direction.

Fig 11 Assigning Fixed Support

Step 7 Defining Loading conditions for live load, dead load and seismic loads.

| oads         |              | Self Weight | Auto           | Click To:           |
|--------------|--------------|-------------|----------------|---------------------|
| Load         | Туре         | Multiplier  | Lateral Load   | Add New Load        |
| eq y         | Seismic      | ~ 0         | IS 1893:2016 V | Modify Load         |
| Dead<br>Live | Dead<br>Live | 1           |                | Modify Lateral Load |
| eq x         | Seismic      | 0           | IS 1893:2016   |                     |
| eq y         | Seismic      | U           | IS 1893:2016   | Delete Load         |
|              |              |             |                |                     |

Fig 12 Defining Load patterns



#### Aayush Awasthi et al Int J Sci Res Civil Engg. March-April-2023, 7 (2) : 129-146

| Direction and Eccentricity |                                           | Seismic Coefficients                               |           |
|----------------------------|-------------------------------------------|----------------------------------------------------|-----------|
| 🛃 X Dir                    | 🗌 Y Dir                                   | Seismic Zone Factor, Z                             |           |
| X Dir + Eccentricity       | Y Dir + Eccentricity Y Dir - Eccentricity | <ul> <li>Per Code</li> <li>User Defined</li> </ul> | 0.16 ~    |
| Ecc. Ratio (All Diaph.)    |                                           | Site Type                                          | <b>II</b> |
| Overwrite Eccentricities   | Overwrite                                 | Importance Factor, I                               | 1.5       |
| Story Range                |                                           | Time Period                                        |           |
| Top Story                  | Story10 V                                 | O Approximate Ot (m) =                             |           |
| Bottom Story               | Base ~                                    | Program Calculated                                 |           |
| Factors                    |                                           | ◯ User Defined ⊤ =                                 | sec       |

Fig 13 Seismic load as per IS 1893:2002.

| Function Name                | response           | , in the second se | unction  | Damping Ratio              |
|------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| arameters                    |                    | Defined Fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion     |                            |
| Seismic Zone                 | V                  | Perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d        | Acceleration               |
| Seismic Zone Factor, Z       | 0.36               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _        | 0.054                      |
| Importance Factor , I        | 1.5                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | 0.054                      |
| Soil Type                    | III                | <ul> <li>✓</li> <li>0.67</li> <li>0.8</li> <li>1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | 0.135<br>0.1127            |
| Response Reduction Factor, R | 5                  | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.0902<br>0.0751<br>0.0644 |
| Convert to User I            | Defined            | 1.4<br>1.6<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 0.0564<br>0.0501           |
| unction Graph                |                    | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lot Opti | ons                        |
|                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🔾 Line   | ar X - Linear Y            |
| 1E+00 -                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        | ar X - Log Y               |
|                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        | X - Linear Y               |
| 1E-01 -                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) Log    | X - Log Y                  |
|                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                            |
| 1E-02                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | ОК                         |
|                              | 5.0 6.0 7.0 8.0 9. | 0 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                            |
|                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Cancel                     |

Fig 14 Response Spectrum Analysis

Step 8 Checking the model for the analysis

| - C | heck Model                                              | ) |
|-----|---------------------------------------------------------|---|
|     | Length Tolerance for Checks                             |   |
|     | Length Tolerance for Checks 1 mm                        |   |
|     | Joint Checks                                            |   |
|     | Joints/Joints within Tolerance                          |   |
|     | Joints/Frames within Tolerance                          |   |
|     | Joints/Shells within Tolerance                          |   |
|     | Frame Checks                                            |   |
|     | ✓ Frame Overlaps                                        |   |
|     | Frame Intersections within Tolerance                    |   |
|     | ✓ Frame Intersections with Area Edges                   |   |
|     | Shell Checks                                            |   |
|     | Shell Overlaps                                          |   |
|     | Other Checks                                            |   |
|     | Check Meshing for All Stories                           |   |
|     | Check Loading for All Stories                           |   |
|     | Check for Duplicate Self Mass                           |   |
|     | Fix                                                     |   |
|     | ☑ Trim or Extend Frames and Move Joints to Fix Problems |   |
|     | Joint Story Assignment                                  |   |
|     | Check Selected Objects Only Select/Deselect All         |   |
|     | OK Cancel                                               |   |

Fig 15 Checking the model

Step 9 Results were generated on parameters of storey displacement, shear force, bending moment and axial force.

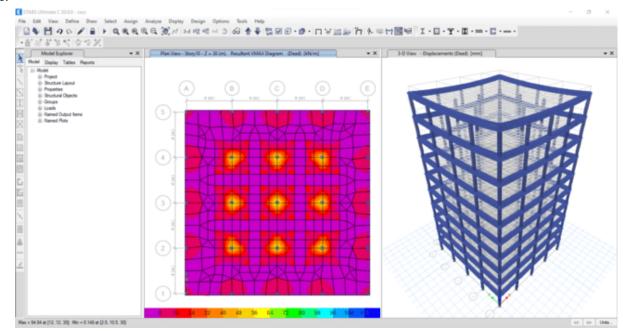
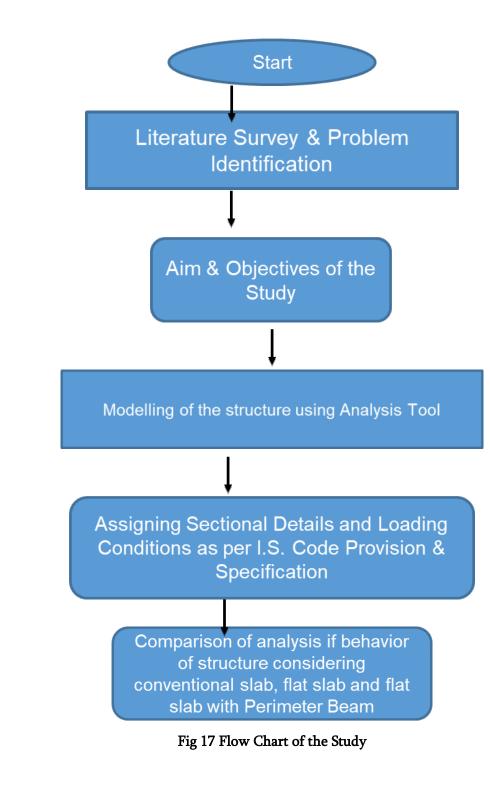






Fig 16 Stress Analysis of structure



#### Flow Chart



Case I G+10 with Conventional Slab.

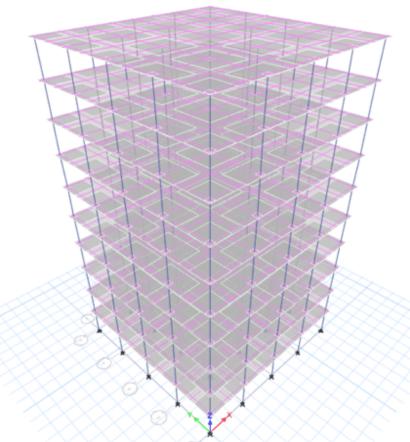



Fig 17 G+10 Structure with Conventional Slab

Here in the G+10 storey structure is considered with a conventional slab at each floor. Case II G+10 Structure with Flat Slab

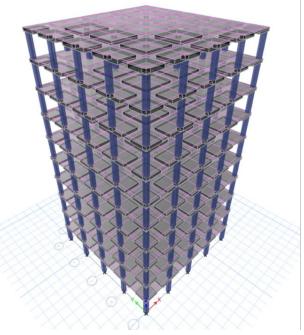



Fig 18 G+10 Structure with Flat slab

Here in the G+10 storey structure is considered with a flat slab at each floor.

Case III G+10 Structure with Flat Slab and Staggered Beam

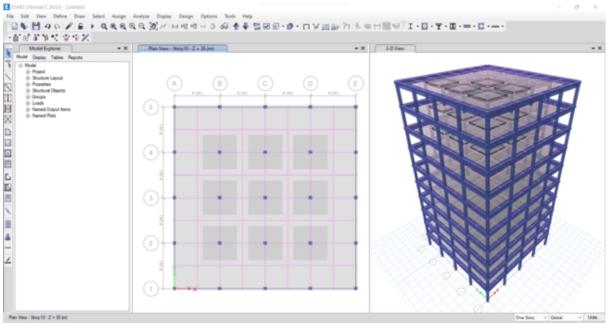
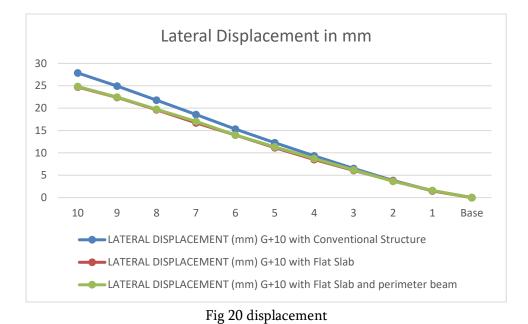



Fig 19 G+10 Structure with Flat Slab and Staggered Beam

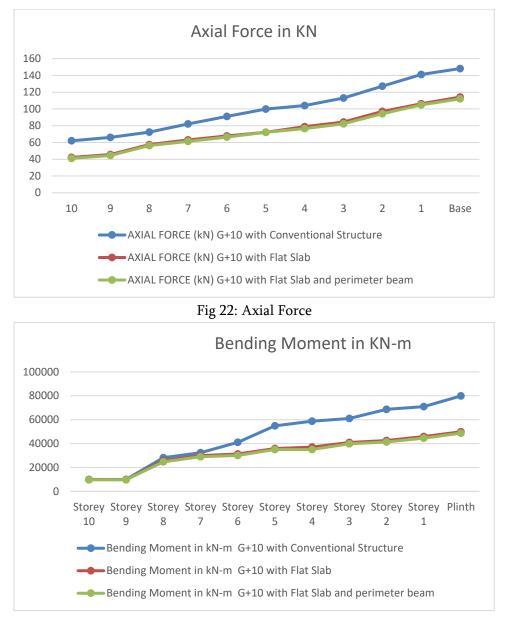
Here in the G+10 storey structure is considered with a flat slab and staggered beam at each floor.


Table 1 Building Geometry

| Building Description                  |             |  |  |  |
|---------------------------------------|-------------|--|--|--|
| Length x Width                        | 28mx28m     |  |  |  |
| No. of storeys                        | 10          |  |  |  |
| Storey height                         | 3m          |  |  |  |
| Bottom Storey Height                  | 3m          |  |  |  |
| Number of Grid Line<br>in X-direction | 5           |  |  |  |
| Number of Grid Line<br>in Y-direction | 5           |  |  |  |
| Spacing of Grid in X-<br>direction    | 4m          |  |  |  |
| Spacing of Grid in Y-<br>direction    | 4m          |  |  |  |
| Beam Size                             | 400mmx300mm |  |  |  |
| Column Size                           | 400mmx400mm |  |  |  |
| Column Size C2                        | 400x400mm   |  |  |  |



| Conventional Slab |        |
|-------------------|--------|
| Thickness         | 150mm  |
| Flat Slab         | 150mm  |
| Flat Slab with    |        |
| Perimeter Beam    | 150 mm |


# IV. ANALYSIS RESULT



Storey Sheaa

Fig 21 Storey Shear







### V. Conclusion

### Storey Displacement

When structures are subjected to lateral loads like earthquake and wind loads, lateral displacement is crucial. As a building's height rises and becomes more flexible to lateral loads, structures become more sensitive, hence lateral displacement is dependent on the height and slenderness of the structure. Lateral displacement was maximum for structure with conventional slab and structure with flat slab and structure with flat slab and perimeter beam were found stable in handling lateral forces. Marginal difference was seen of 0.2% in G+10 structure with flat slab and G+10 structure with flat slab and perimeter beam.

### Storey Drift

Lateral (story) drift is the amount of sidesway between two adjacent stories of a building caused by lateral (wind and seismic) loads. For a single-story building, lateral drift equals the amount of horizontal roof displacement. Lateral drift was found least in G+10 structure with flat slab and perimeter beam proving to be 2.3% less than G+10 structure with Flat Slab and 4.5% less than G+10 structure with



conventional slab. Maximum storey drift was visible in storey 5 and storey 6.

### Storey Shear

Storey shear factor is the ratio of the story shear force when story collapse occurs to the story shear force when total collapse occurs. Through a series of dynamic analyses, simple equations are provisionally proposed to calculate the necessary story shear safety factor that can be used to prevent story collapse. Storey shear was maximum for G+10 structure with flat slab and perimeter beam, 12% higher when compared to G+10 structure with flat slab and 18% higher than G+10 structure with conventional slab. Maximum Storey shear for G+10 structure with flat slab and perimeter beam was 2876.87 kN.

### **Axial Force**

Axial force refers to a load whose line of action runs along the length of a structure or perpendicular to the structure's cross-section. Moreover, the line of force goes through the center of gravity of the member's cross-section. When this load tends to compress the member along its line of action, it is an axial compression load and carries a negative sign by convention. While if the load extends the member along its line of action, it is an axial tension load, carrying a positive sign. Axial force was 7.12% higher in G+10 structure with conventional slab when compared to G+10 structure with flat slab and G+10 structure with Flab slab Perimeter beam.

### Storey Stiffness

The bottom of the storey is the only part that is restricted from moving laterally; the remainder of the storey is free to rotate. Storey stiffness is calculated as the lateral force causing unit translational lateral deformation in that storey. Storey stiffness was 3.1%higher in G+10 structure with conventional slab when compared to G+10 structure with Flat Slab and G+10 structure with flat slab perimeter beam.

### **Bending Moment**

flat slab with staggered beam is comparatively more stable and observing low moment in comparison

which states that it is comparatively more economical whereas flat slab case is second best in comparison.

### VI. Future Scope

From the above researches a broad conclusion can be taken on flat slabs and their behaviors, further studies can be carried out on the fallowing aspects.

1. Flat slab with grid mesh model with various shapes analysis can be made using finite element software.

2. In the present study flat slab with periphery beams is considered for structure, further study may also be undertaken by flat slab without periphery beam structure.

3. In this research fixed base is considered for the structure, in future study can be made using soil structure interaction.

4. Through response spectrum method structure analysis can be made and time history analysis can be carried out.

5. The structure can be analysed by different software.

# VII. REFERENCES

- [1]. A.S.Patil, Ashish Balasaheb Daphal, Shashank Sadanand Gavasane, Shubham Sambhajirao Ghorpade, Pankaj Dashrath Ekatpure and Akshay Ashok Nalawade, [Analysis Of Behavior Of Flat Slab And Conventional Slab Structure Under Seismic Loading], IJSART - Volume 4 Issue 6 – JUNE 2018.
- [2]. Rathod Chiranjeevi, Sabbineni Ramyakala, Mandala Venugopal and Nandanar Anusha,
  [Seismic Performance of Flat Slab with Drop and Conventional Structure], International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 5 Issue 10, October-2016.
- [3]. Jayant Awasthy and Dhruv Sharma, [Analytical Study of Flat Slabs for High Seismic Zones], International Journal of Latest Technology in Engineering, Management & Applied Science



(IJLTEMAS), Volume VII, Issue IV, April 2018 | ISSN 2278-2540.

- [4]. Anghan Jaimis, Mitan Kathrotiya, Neel Vagadia and Sandip Mulani, [Comparative Study of Flat Slab and Conventional Slab using Software Aid], Global Research and Development Journal for Engineering | Recent Advances in Civil Engineering for Global Sustainability | March 2016.
- [5]. Kalyani Gulabrao Ahirrao and Hemant Dahake, [STUDY OF SEISMIC BEHAVIOUR OF HIGH RISE FLAT SLAB STRUCTURE WITH PERIPHERAL BEAM VS DROP PANEL STRUCTURE], Journal of Engineering Science, Vol 11, Issue 7,July/ 2020, ISSN NO: 0377-9254.
- [6]. S. DhanaSree and E. Arunakanthi, [Seismic Analysis of Flat Slab by using ETABS], International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075 (Online), Volume-9 Issue-3, January 2020.
- [7]. Shital Borkar, Kuldeep Dabhekar, Isha Khedikar and Santosh Jaju, [Analysis of Flat Slab Structures in Comparison with Conventional Slab Structures], IOP Conf. Series: Earth and Environmental Science 822 (2021) 012049.
- [8]. Priyanka Vijaykumar Baheti, D.S.Wadje and G.R.Gandhe, [Comparative seismic performance of Flat slab with peripheral beam provided infill and shear wall panel at different heights], IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), Volume 14, Issue 3 Ver. IV. (May. - June. 2017), PP 27-34.
- [9]. Denis K, Mateng'e and Manu SE, [AN ANALYTICAL STUDY OF THE SEISMIC PERFORMANCE OF FLAT SLAB STRUCTURES WITH DIFFERENT SHAPES OF DROP PANELS], International Research Journal of Modernization in Engineering

TechnologyandScience,Volume:04/Issue:07/July-2022.

- [10]. Ulfat Saboree and Paramveer Singh, [COMPARATIVE STUDY OF FLAT SLAB SLAB AND GRID IN REINFORCED CONCRETE STRUCTURES], International Journal of Civil Engineering and Technology (IJCIET), Volume 9, Issue 5, May 2018, pp. 208-217.
- [11]. Manish Kumar Pandey and Dr. Raghvendra Singh, [Seismic Response of Large span slab in Horizontal Setback Building], International Journal for Research in Applied Science & Engineering Technology (IJRASET), ISSN: 2321-9653, Volume 9 Issue XI Nov 2021.
- [12]. Ved Prakash Parihar, Priyanka Dubey and Ashwin Hardiya, [Earthquake Analysis of Irregular Flat Slab High Rise structure in Diverse Earthquake Zone], International Journal of Research Publication and Reviews, Vol 2, no 11, pp 1033-1050, November 2021.

### Cite This Article :

Aayush Awasthi, Rahul Satbhaiya, "Seismic Analysis of Flat Slab Structure Using ETABS Software", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 7, Issue 2, pp.129-146, March-April.2023

URL : https://ijsrce.com/IJSRCE237214

