

Analysis of a Cable-Stayed Suspension Hybrid Bridge Considering Vehicular Loading using CSI Bridge

Vivek Soni¹, Rahul Satbhaiya²

P.G. Scholar¹, Assistant Professor²

Department of Civil Engineering, Infinity Management & Engineering College, Madhya Pradesh, India

ARTICLEINFO	ABSTRACT
Article History:	Cable-stayed bridges are built for providing connectivity over obstacles such
Accepted: 05 April 2023 Published: 12 April 2023	as rivers, mountains, flyovers over rotary squares and valleys for a long span. Cable stayed bridge provides ample stability and utilises structure material and further its advantages goes in for cheap maintenance and design. Design
	 of the bridge is highly dependent on its function and purpose and the nature of terrain of the site.
Publication Issue	of terrain of the site.
Volume 7, Issue 2	A bridge type known as a suspension bridge has its deck suspended by
March-April-2023	vertical suspenders and suspension cables. The main structural elements of a suspension bridge system are stiffening girders/trusses, main suspension
Page Number	cables, main towers, and cable anchorages at each end of the bridge. Vertical
102-116	suspenders sustain the weight of the deck and the traffic load, while the main cables are stretched between towers and eventually connect to the anchorage or the bridge itself. The superstructures of suspension bridges are constructed utilising the cable erection technique similarly to other cable- supported bridges.
	Keywords : Cable Stayed Bridge (CSB); Suspension Bridge (SB); Cable Stayed Suspension Hybrid Bridge (CSSHB),Pylon, Seismic Analysis ,CSi Bridge.

I. INTRODUCTION

Long span bridge are increasing day by day to facilitate the need of construction projects. Cable stayed bridges and suspension bridges are the systems used to achieve long span bridges. The spans of cablesupported bridges range from 200 to 2000 metres. The greatest span of a cable-supported bridge system is determined by the density, stiffness, and strength of the materials utilised. In the design and analysis of cable-stayed bridges and suspension bridges, high strength steel cables are a key component, which is superior for effective tension resistance. The advantages of a cable-supported bridge are in the way that the system uses the materials.

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

A suspension bridge is a form of bridge in which the deck is suspended on vertical suspenders from below suspension cables. In the early 1800s, the first examples of this kind of bridge were constructed in the modern era. In many hilly areas of the world, simple suspension bridges with no vertical suspenders have a long history.

Thousand years ago, people cross water bodies with the help of cable attached with wooden block. It was born of cable stayed and suspension bridge but mainly cable stayed bridge developed in 1595 and commonly used in 19th century. In early days, Cable Bridge was constructed with combination of suspension bridge and cable stayed bridge. In 1808 an American inventor named James give the born of modern cable bridge. Two cables are used over the top of many towers and anchoring this chain on the either side of bridge structure. Although suspension bridges and cable stayed bridges are quite similar, the main distinction between the two is how the deck force is transferred to the cable in a suspension bridge. In a cable stayed bridge, the cable is connected directly to the deck. Because of its low weight, improved aesthetics, and long span designs, cable stayed bridges have gained popularity. The primary purpose of a cable-stayed bridge is to handle its own weight and impending traffic loads safely while also being aesthetically beautiful and demonstrating excellent serviceability under any conceivable load scenario. Steel wire cable is used to suspend a cable stayed bridge deck. The top vertical towers are fixed with these cables, which transmit shear force to the vertical members, which then transform it into compression force.

In this study, three distinct cases—a suspension bridge, a cable-stayed bridge, and a hybrid cablestayed suspension bridge—are largely examined. CSI Bridge's analytical application was used to model the data and conduct the analysis while accounting for seismic and vehicle loading.

Suspension Bridge

In a suspension bridge a deck is supported by vertical hangers, which are connected to main catenary cables. These primary catenary cables are cradled by pylons and secured at an anchor point at the end of the span. Modern suspension bridges can cross greater lengths than any other type of bridge because they are lightweight, aesthetically beautiful, and strong. They are also some of the most expensive to build. Although suspension bridges can be built to be sturdy enough to accommodate freight trains, they were almost all created with vehicular traffic in mind.

Vertical loads are carried by tensioned, curved cables in suspension bridges. These loads are passed to the anchorages, which must withstand the inward and occasionally vertical pull of the cables, as well as the towers, which carry them by vertical compression to the ground. The towers are the only parts of the suspension bridge that are in compression, making it appear as an upside-down arch under tension. The deck must be carefully controlled to prevent excessive movement because it is suspended in the air. Therefore, the deck needs to be either heavy, stiff, or both.

Fig 1 Suspension Bridge II. Objectives of the research

The main objective of the research is to study the behaviour of cable-stayed bridge, suspension bridge and Cable-Stayed Suspension Hybrid Bridge. To accomplish the objectives, following studies are analyzed-

Seismic behaviour of cable stayed bridge, suspension bridge and hybrid bridge

- To determine the effectiveness of hybrid bridge in comparison to suspenson and cable stayed bridge.
- To determine the stability of all the thee cases considering vehicular loading as per I.R.C.

To determine the utilization of Csi bridge software considering Indan Codal Provision.

III. Review of Literature Summary

Rajni Verma and Rashmi Sakalle (2022) in the research paper, girder Bridge and cable stayed bridge was modelled and comparative analysis was carried out for dynamically loading conditions. A comparison was made between bridges for dead load,live load and combined load. Structural analysis was done to determine internal forces, stresses and deformation of structure under various load effects. the modelling and analysis of both the cases was performed using analytical application SAP 2000.

The support response in the Cable stayed bridge is 1091.65 K.N., whereas the Girder bridge is 1427.87 K.N., indicating that stresses are properly distributed in the Cable stayed bridge scenario. As a result, in the case of a cable-stayed bridge, the support reaction is 21.11 percent lower. Based on the results of the moment, forces, and deflection given in the preceding chapter, it can be concluded that a Cable Stayed bridge is more stable in resisting load. When comparing the cost of a cable-stayed bridge to the cost of a girder bridge, the cable-stayed bridge is 18% more expensive. The results showed that the cable-stayed bridge was more stable and adequate for big loads, while the girder bridge was more cost effective.

Chao Zhang et.al (2021) The cable-stayed bridge with diamond concrete pylons' lateral seismic fragility assessment was provided in a research study. The prototype bridge is a standard cable-stayed bridge with a diamond-shaped pylon. The SAP2000N platform has a three-dimensional FE model of the prototype CSB. The weak points of pylons and piers are identified using capacity demand ratios. According to the bending moment-curvatures, the plastic hinge in the FEM simulates all weak points. Four alternative limit states (LSs) and damage indices for each component of the CSB are defined.

The fragility curves of the bridge system on the lower and upper bounds exhibit little variation in SD states and MD states, according to the seismic fragility study of the bridge system. These are seen in the ED and CD states, though, where each component's failure probability is different. The entirety of a cable-stayed bridge is vulnerable to minor and moderate damage. Additionally, the fragility of the entire bridge as a whole is greater than the fragility of any one system component.

IV. Methodology

Step 1 research papers were analyzed from different authors who have investigated behaviour of cable stayed bridge and suspension bridge on different loading conditions. Different tools were used for understanding the behaviour of the models and the values were validated on ground of axial load, omen and bending moment using SAP2000 and Staad.Pro, while some authors calculated the values manually.

Step 2 Designing the model of all the three cases using CsiBridge where the materials, tendons, bent design, section data, bridge restrainer data, foundation spring data, bridge bearing data and bridge abutment data is defined and analyzed.

Step 3 Defining material properties for three bridges where the material properties were predefined via Csi bridge application for concrete, steel and tendons.

Material Name and Display Color	M30	
Material Type	Concrete	\sim
Material Grade	M30	
Material Notes	Mod	dify/Show Notes
Weight and Mass		Units
Weight per Unit Volume	24.9926	KN, m, C 🛛 🗸
Mass per Unit Volume	2.5485	
Isotropic Property Data		
Modulus Of Elasticity, E		27386128.
Poisson, U		0.2
Coefficient Of Thermal Expansion	on, A	1.300E-05
Shear Modulus, G		11410887.
Other Properties For Concrete Ma	aterials	
Specified Concrete Compressive	e Strength, f'c	30000.
Expected Concrete Compressive	e Strength	30000.
Lightweight Concrete		
Shear Strength Reduction F	actor	
Switch To Advanced Property I	Display	

Fig 2 Defining concrete property

B Material Property Data		×
General Data		
Material Name and Display Color	Fe345	
Material Type	Steel ~	
Material Grade	Fe345	
Material Notes	Modify/Show Notes	
Weight and Mass	Units	
Weight per Unit Volume 76.9729	KN, m, C 🛛 🗸	
Mass per Unit Volume 7.849		
Isotropic Property Data		
Modulus Of Elasticity, E	2.100E+08	
Poisson, U	0.3	
Coefficient Of Thermal Expansion, A	1.170E-05	
Shear Modulus, G	80769231.	
Other Properties For Steel Materials		
Minimum Yield Stress, Fy	345000.	
Minimum Tensile Stress, Fu	450000.	
Expected Yield Stress, Fye	379500.	
Expected Tensile Stress, Fue	495000.	
Switch To Advanced Property Display	Cancel	

Fig 3 Defining Steel Property

Step 4 Defining Bridge Bent data as cap beam length of 9.15m with number of columns as 1 and single bearing line is considered for continuous superstructure.

Bridge Bent Name	Units	Girder Support Condition	
BENT1	KN, m, C	✓ ○ Integral	
		Connect to Girder Bottom Only	
Bent Data			
Cap Beam Section +	FSEC1	~	
Cap Beam Length	9.15		
Number of Columns	1		
Modify/Show (Column Data		
Bent Type			
Single Bearing Line (Continuous)	Superstructure)		
O Double Bearing Line (Discontinu	ious Superstructure)		

Fig 4 Bridge Bent Design

Step 5 Defining Bridge Bearing data. A bridge bearing is a component of a bridge which typically provides a resting surface between bridge piers and the bridge deck. The purpose of a bearing is to allow controlled movement and thereby reduce the stresses involved. Here in this step a customized name is given to bridge bearing along with its defining units and consider support property for link.

Bridge Bearing Name	BBR	G1	Units KN, m, C V
 Bridge Bearing Is Defined By: Link/Support Property User Definition 		+ LINK1	~
	ОК	Cancel	

Fig 5 Bridge Bearing Data

Step 6 In order to maintain the embankment and transfer the vertical and horizontal stresses from the superstructure to the foundation, abutments are employed at the ends of bridges. Here the abutment is connected to the girder along with the foundation spring substructure.

Vivek Soni et al Int J Sci Res Civil Engg. March-April-2023, 7 (2): 102-116

Bridge Abutment Name	BABT1		Units KN, m, C v
bridge Abutment Name	DADTT		KN, m, C 🔍
Girder Support Condition			
O Integral			
Connect to Girder Bottom O	nly		
Substructure Type			
Foundation Spring			
O Continuous Beam (Continuo	usly Supported)		
Section Property		+	
Beam Length			
Foundation Spring			
Foundation Spring Property		+ Fixed	~
Note: When substructure type line spring.	is grade beam, fo	oundation spring pro	perty represents a

Fig 6 Bridge Abutment Data

Step 7 Defining Foundation Spring Data which is user defined as fixed release type

oundation Spring Name	FNSP1		KN, m, C
undation Spring Is Defined By	<i>y</i> :		
) Link/Support Property		+	
) User Definition			
			1.
Property is Defined for TI	his Length in a Lir	ie Spring	1.
Property is Defined for TI	-		1.
	his Area in an Are	a Spring	
Property is Defined for Ti er Foundation Spring	his Area in an Are		1.
Property is Defined for Ti er Foundation Spring DOF/Direct	his Area in an Are	Release Type	1.
Property is Defined for Ti er Foundation Spring DOF/Direct Translation Vertical (U1)	his Area in an Are	Release Type Fixed	1.
Property is Defined for Ti er Foundation Spring DOF/Direct Translation Vertical (U1) Translation Along Skew (U2)	his Area in an Are	Release Type Fixed Fixed	1.
Property is Defined for Ti er Foundation Spring DOF/Direct Translation Vertical (U1) Translation Along Skew (U2) Translation Normal to Skew (tion	Release Type Fixed Fixed Fixed	1.

Fig 7 Foundation Spring Data

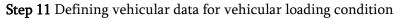
Step 8 Defining Bridge Restrainer Data. Restrainers are used to reduce deck unseating over sub structures due to earthquakes. The main effect of restraints upon global bridge motions is found to constrain and redistribute the relative distances between adjacent vibrations units. The bridge modeller enables modelling of cable bridges. Here the restrainer length and area is defined.

Bridge Restrainer Name BRST1	Units KN, m, C V
Bridge Restrainer Type	
C Link/Support Property	+
User Definition	
User Restrainer	
Restrainer Length	0.6096
Restrainer Area	6.452E-04
Restrainer Modulus E	1.999E+08
Restrainer Slack Length	0.

Fig 8 Bridge Restrainer Data

Step 9 Defining lane data for deck.

Lane	Name	LANE1	
Frame	Centerline Offset	Lane Width]
1	1.	0	Add
			Modify
			Delete
Reverse Ord	er Reverse Sign	Move Lane]
	er Reverse Sign		d Discretization Lengths
ane Edge Type	er Reverse Sign		d Discretization Lengths
Reverse Ord ane Edge Type Left Edge Right Edge		Maximum Lane Load	
ane Edge Type Left Edge Right Edge kdditional Lane L	Interior ~ Interior ~ oad Discretization Parame	Maximum Lane Loan Along Lane Across Lane ters Along Lane	3.
ane Edge Type Left Edge Right Edge Additional Lane L	Interior ~	Maximum Lane Loan Along Lane Across Lane ters Along Lane	3. 3. of Span Length
ane Edge Type Left Edge Right Edge Additional Lane L	Interior ~ Interior ~ oad Discretization Parame	Maximum Lane Load Along Lane Across Lane ters Along Lane	3.
ane Edge Type Left Edge Right Edge Discretization Discretization	Interior Interior oad Discretization Parame Length Not Greater Than Length Not Greater Than	Maximum Lane Load Along Lane Across Lane ters Along Lane	3. 3. of Span Length
ane Edge Type Left Edge Right Edge Additional Lane L	Interior Interior oad Discretization Parame Length Not Greater Than Length Not Greater Than	Maximum Lane Load Along Lane Across Lane ters Along Lane	3. 3. of Span Length of Lane Length


Fig 9 Lane Data

Step 10 Defining section properties for tendons and here the tendons size was similar in all the three cases.

Тег	ndon Section Name		TEN1
Sec	ction Notes		Modify/Show
Tenc	Ion Modeling Options For A	Analy	vsis Model
0	Model Tendon as Loads		
۲	Model Tendon as Elemen	nts	
Tenc	Ion Parameters		
Pre	stress Type		Prestress
Ма	terial Property	+	Tendon
Tend	Ion Properties		
0	Specify Tendon Diameter	r	6.452E-04
۲	Specify Tendon Area		6.452E-04
	Torsional Constant		6.625E-08
	Moment of Inertia		3.312E-08
	Shear Area		5.806E-04
Units	3		Display Color
10	N, m, C 🗸		

Fig 10 Tendons section Data

Vehicle Name	Design Type		Units		
VEH-1	Vehicle Live	~	KN, m, C \sim		
Source			Notes		
Source: User Defined	Conver		Notes		
Length Effects				Load Plan	
Axle	AASHTO Impact	~	Modify/Show		
Uniform	AASHTO Impact	~	Modify/Show		
Vehicle Location in Lane					
Vehicle Applies To St	raddle (Adjacent) Lanes Only	,		Load Elevation	
Straddle Reduction	Factor 1			Modify/Show Loads	
Vehicle Remains Fully	In Lane (In Lane Longitudina	Direction)		Vertical Loading	Horizontal Loading
Usage		Min Dist Allowed F	From Axle Load	Center of Gravity	
Lane Negative Momen	ts at Supports	Lane Exterior Ed	ge 0.	Height - Axle Loads	0.
Interior Vertical Suppo	ort Forces	Lane Interior Edg	ge 0.	Height - Uniform Load	s 0.
All other Responses					

Fig 11 Vehicle Data

Step 12 Defining and assigning loading condition along with vehicular loading condition as per IRC 6 and seismic load as per IS 1893:2016.

Vehicle	Lane	Start Dist	Start Time	Direction	Speed	Location
VEH-1	V LANE1	√ 0.	0.	Backward v	1.	~
VEH-1	LANE1	0.	0.	Forward	1.	-
VEH-1	LANE1	0.	0.	Forward	1.	
VEH-1	LANE1	0.	0.	Backward	1.	
VEH-1	LANE1	0.	0.	Backward	1.	
		Add	Modify	Delete		
*	ads will be totally igi	lered. Leading and trail nored, including all axle	-	-		

Fig 12 Multi Step Bridge Live Load Pattern Generation

IS 1893:2016 Seismic Load Pattern		×
Load Direction and Diaphragm Eccentricity Global X Direction	Seismic Coefficients Seismic Zone Factor, Z	
Global Y Direction	Per Code	•
Ecc. Ratio (All Diaph.) 0.05	O User Defined Soil Type Ⅱ ✓	•
Override Diaph. Eccen. Override	Importance Factor, I	
Time Period	Factors	
O Approximate Ct (m) =	Response Reduction, R 5.	
Program Calc		
O User Defined ⊤ =		
Lateral Load Elevation Range		
Program Calculated		
O User Specified Reset Defaults	ОК	
Max Z	Cancel	
Min Z	Cancer	

Fig 13 Seismic Load Pattern

Step 13 Analyzing the structure for all the models for deformation

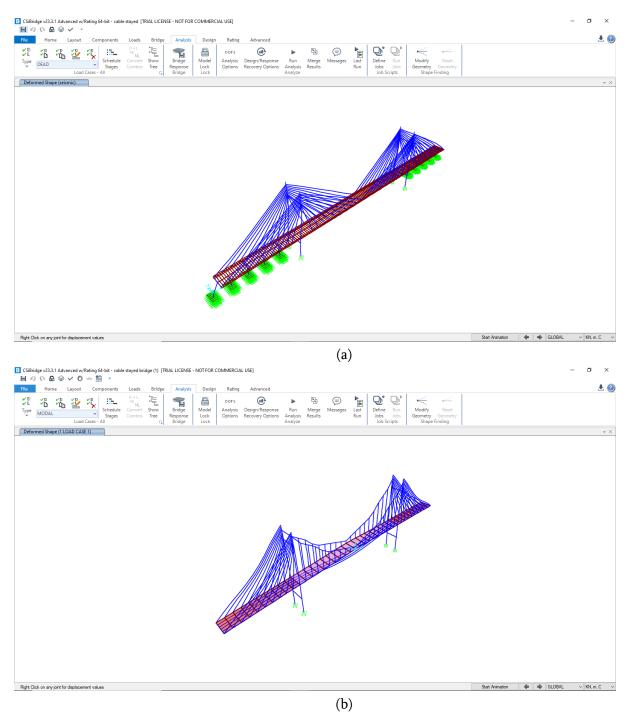


Fig 3.14 Analyzing the structure for deformity Table 1 Description of Structure

Geometrical Description of Cable Stayed Bridge		
Main Span	300m	
Left Span	150m	
Right Span	150m	

Width of deck	30m
Depth of Deck	3m
Type of Deck	Beam Slab
Deck Level	15m
Pattern of Cable	Harp
Height of Pylon	35m
Height of Left Pylon	25m
Height of Right Pylon	20m
Type of Pier	Solid Rectangular
Type of Foundation	Footing
Pier in Left Span	5
Pier of Right Span	5
Type of Pylon	H Frame
Height above Deck	100m
Type of Foundation	Fixed
Total Depth	40m
	-

Table 2 Geometrical Description of Suspension Bridge

Geometrical Description of Suspension Bridge		
Length of Left Span	20m	
Length of Middle Span	80m	
Length of Right Span	20m	
Width of Deck	3m	
Height of Column H1	5m	
Number of Divisions N1	6	
Number of Divisions N2	24	
Number of Divisions N3	6	
Minimum Middle Sag	2	
Height of Column H2	10	

Table 3 Geometrical Description of Hybrid Bridge

Geometrical Description of Hybrid Ca	able Stayed Suspension Bridge
Main Span	300m
Left Span	150m
Right Span	150m
Width of deck	30m
Depth of Deck	3m
Type of Deck	Beam Slab
Deck Level	15m
Pattern of Cable at the ends	Harp
Pattern of cable in center	Straight
Height of Pylon	35m
Height of Left Pylon	25m
Height of Right Pylon	20m
Type of Pier	Solid Rectangular
Type of Foundation	Footing
Pier in Left Span	5
Pier of Right Span	5
Type of Pylon	H Frame
Height above Deck	100m
Type of Foundation	Fixed
Total Depth	40m

V. ANALYSIS RESULT

Results and Discussion

Shear Force in kN		
Suspension Bridge	Cable Stayed Bridge	Hybrid Bridge
890.394	799.207	791.007

Discussion: When two fastened structures (or two components of a single structure) are pulled apart, shear stress results. The shear stress can figuratively rip bridge materials in half if unchecked. Here the shear force was least in case of Hybrid bridge as 791.007 kN whereas maximum shear force was visible in Suspension

bridge as 890.394kN. The shear force was 5% less in hybrid bridge in comparison to Cable stayed bridge and 11 % less in comparison to Suspension Bridge.

Displacement in mm		
Suspension Bridge	Cable Stayed Bridge	Hybrid Bridge
621.098	598.786	593.909

Discussion: Displacement is the separation of one node or element (such as a pier, deck, pylon, or set of tendons) from its original position. The movement may be caused by a beam deflecting, but it may also be the consequence of the complete object moving, undistorted, as a box sliding across a friction-free surface. The maximum deflection in this example was 621.098 mm for the suspension bridge, 598.768 mm for the cable-stayed bridge, and 593.909 mm for the hybrid bridge. It should be mentioned that suspension bridges operate better when their length is greater than 400 metres.

Support Reaction in kN		
Suspension Bridge	Cable Stayed Bridge	Hybrid Bridge
4432.932	5132.09	5210.032

Discussion: A support response might be a force acting on a support or an end moment that follows from a movement that is not possible. Support reactions and external forces operating on structural systems are in a state of equilibrium. There are six support responses applied from the fixed support to the structure since the joint with fixed support has no degrees of freedom. Here, the hybrid bridge saw the highest level of support reaction, which is 6% higher than a cable-stayed bridge and 9% more than a suspension bridge.

Maximum Moment in kN-m		
Suspension Bridge Cable Stayed Bridge Hybrid Bridge		
1111.88	1098.27	998.213

Discussion: The maximum instant occurs when the shear force is zero or changes sign (positive to negative or vice-versa). The Suspension bridge showed the greatest moment, but the Hybrid bridge showed the least.

VI. CONCLUSION

This research is primarily focused towards analyzing three different cases namely suspension bridge, cable stayed bridge and Hybrid cable stayed suspension bridge. The modelling and analysis was performed using analytical application CSI bridge considering vehicular loading and seismic loading. Shear Force

When two fastened structures (or two components of a single structure) are pulled apart, shear stress results. The shear stress can figuratively rip bridge materials in half if unchecked. In this scenario, the shear force was lowest for the hybrid bridge at 791.007 kN and highest for the suspension bridge at 890.394 kN. In comparison to a cable-stayed bridge and a suspension bridge, the shear force in a hybrid bridge was 5 and 11 percent lower, respectively.

Displacement

Displacement is the separation of one node or element (such as a pier, deck, pylon, or set of tendons) from its original position. The movement may be caused by a beam deflecting, but it may also be the consequence of the complete object moving, undistorted, as a box sliding across a friction-free surface. The maximum deflection in this example was 621.098 mm for the suspension bridge, 598.768 mm for the cable-stayed bridge, and 593.909 mm for the hybrid bridge. It should be mentioned that suspension bridges operate better when their length is greater than 400 metres.

Torsion

Torsion is the state of strain in a material that has been twisted by an applied torque. It will occur whenever a structural element is subject to a twisting force. Torsion was maximum in suspension bridge in comparison to other two cases. For instance, engineers who construct suspension bridges must pay close attention to torsion. The suspended roadway rotates and twists like a rolling wave as a result of strong wind.

VII. REFERENCES

 Bilcilintan Patel, Amit Baghel, Nikhil Kumar and Pankaj Kumar Singh, [A STUDY ON VIBRATION CONTROLLER AND SEISMIC RESISTANT CABLE STAYED BRIDGE WITH MODEL], International Journal of Advance research in Science and Engineering, Vol no. 6, Issue no. 4, April 2017.

- [2]. Neel Shah, Prashant Kanzariya and Dr. Bimal Shah, [PARAMETRIC STUDY OF CABLE STAYED BRIDGE USING DIFFERENT PYLON CONFIGURATION], International Journal of Engineering Applied Sciences and Technology, 2021 Vol. 5, Issue 10, ISSN No. 2455-2143, Pages 342-348.
- [3]. Junjun Guo, Jian Zhong, Xinzhi Dang and Wancheng Yuan, [Seismic Responses of a Cable-Stayed Bridge with Consideration of Uniform Temperature Load], Appl. Sci. 2016.
- [4]. J H Gabra and A. K. Desai, [Influence of Pylon's Geometry on response of Cable Stayed Suspension Hybrid Bridge (CSSHB)], International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3, September 2019.
- Shubham Garg and Vinod Kumar Modi, [5]. [DESIGN AND ANALYSIS OF CABLE STAYED BRIDGE CONSIDERATION WITH SEISMIC AND WIND LOAD BY CHANGING THE CABLE POSITION], International Advanced Research Journal in Science, Engineering and Technology Vol. 8, Issue 11, November 2021.
- [6]. Sreerag S Kallingal and Priyanka Singh, [Dynamic analysis of cable stayed bridge with various patterns of pylon], E3S Web of Conferences 304, 02005 (2021).
- [7]. Kuihua Mei, Wangwang Fu and Jufeng Su,
 [Seismic Analysis of Hybrid System Bridge of Multi-Span Continuous Girder and Arches],
 E3S Web of Conferences 165, 04032 (2020).
- [8]. Praveen kumar M, Dr. M Rame gowda and Arjun B, [ANALYSIS OF CABLE STAYED BRIDGE UNDER THE ACTION OF VEHICULAR AND SEISMIC LOADS], International Journal of Scientific Development

and Research (IJSDR), October 2017 IJSDR | Volume 2, Issue 10, ISSN: 2455-2631.

- [9]. Abhishek Pandey and Nitesh Kushwah, [Seismic Analysis and Design of Cable Stayed Bridge with Different Cable Arrangements], International Research Journal of Engineering and Technology (IRJET), Volume: 07 Issue: 12 | Dec 2020.
- [10]. Almas M A and Rajesh A K, [Effect of Pylon Shape on the Seismic Response of Curved and Straight Cable Stayed Bridges], International Research Journal of Advanced Engineering and Science, Volume 2, Issue 2, pp. 267-271, 2017.
- [11]. Mayur G. Dangle and Girish Joshi, [Research Paper on Progressive Collapse of Cable Stayed Bridge Using Sap2000], International Journal of Advances in Engineering and Management (IJAEM), Volume 2, Issue 3, pp: 01-04, ISSN: 2395-5252, 2020.
- [12]. Farhan Farid Reshi, Priyanka Singh, Shivangi, Ravinder Kumar Tomar and S K Singh, [Analysis and Design of Cable Stayed and Suspension Bridge Subjected to Wind Loading], IOP Conf. Series: Earth and Environmental Science 889 (2021) 012059.
- [13]. Ali L. Abass, Zaid S. Hammoudi and Haneen A. Mahmood, [Seismic Analysis of a Cable-Stayed Bridge Using the Finite Element Method.], IOP Conf. Series: Materials Science and Engineering, 2018.

Cite this article as :

Vivek Soni, Rahul Satbhaiya, "Analysis of a Cable-Stayed Suspension Hybrid Bridge Considering Vehicular Loading using CSI Bridge", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 7, Issue 2, pp.102-116, March-April.2023 URL : https://ijsrce.com/IJSRCE237212

