

Analysis of a Tall Structure Under Seismic Loading of Two Different Regions Using ETAB

Abhishek Thakur¹, Ankita Singhai²

P.G. Scholar¹, Assistant Professor²

Department of Civil Engineering, Infinity Management and Engineering College, Patheriya Jat, Madhya Pradesh, India

ABSTRACT

Article Info

	Structural developments are increasing rapidly now-a-days throughout the
Publication Issue :	world. Natural calamities like earthquake are happening frequently around the
Volume 7, Issue 1	world, hence, the structure has to be designed for the same. The critical seismic
January-February-2023	analysis of reinforced concrete building, specifically involves the understanding
	behavior of structure under lateral loads unlike the usual gravity loads such as
Page Number: 29-47	dead loads and the live loads. Multistorey building would be the greater part
	influenced by quake constrains to seismic prone areas. The major concern in the
Article History	design of the multi-storey building is the structure to have enough lateral
Accepted : 01 Jan 2023	stability to resist lateral forces, buckling, to control lateral drift and displacement
Published : 07 Jan 2023	of the building.
	In order to design an earthquake resistant structure, the analysis of the structure
	G+11 story is done using ETABS 2020.
	G+11 story is analyzed for two different seismic zones, one location at Bhuj
	Gujarat and other location at Jabalpur, Madhya Pradesh and soil types as per IS
	1893:2016. Further the behavior of the structure was investigated for the
	parameters such as Natural period, Displacement, Base shear, Story Stiffness and
	Story Drift.
	Keywords — Base shear, storey displacement, special moment resisting frame,
	static analysis and Etabs.
	their behaviour varies with the type of soil. These

I. INTRODUCTION

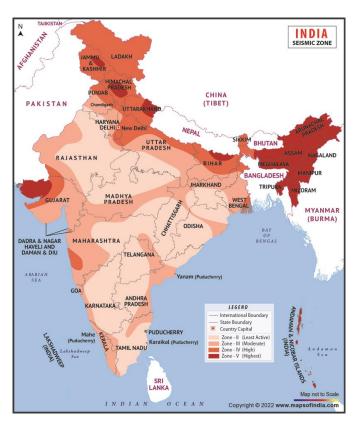
The unique concept used in earthquake engineering is the equivalent lateral force. In structures maximum displacement or member stresses are determined by the Dynamics analysis which further changes to partly dynamic and partly static analysis. There are different types of lateral loads in buildings like wind loads and earthquake loads and their behaviour varies with the type of soil. These types are Hard soil, Medium soil and Soft soil. When seismic waves pass through these soil layers their effects are different .When structure is exhibited to earthquakes it is influenced with the foundation and soil mass. Thus, it changes the movement of the earth .This indicates that the type of soil ,and also depends on the type of structure ,influences the movement of the entire system of ground structures. Because seismic

29

waves are generated from the ground, they consist of changes in the properties of the soil and work in different ways in accordance with the correlate to the properties of the soil. Vibrations that distract the earth's surface caused due to waves generated in the earth are called earthquakes. It is mentioned that earthquakes do not kill human life, but structures that are not built taking into account the forces of an earthquake. Earthquake resistant structures in India currently attach great importance to human life and its security. India's geographical location is such that it comes under the subcontinent area so that's why India is having more than 60% earthquake prone area. Generally buildings are constructed in India design with permanent ,semi – permanent moving loads keeps in mind.

According to IS 1893 2016 code (Clause 6.3.5.3) soil condition is classified into following three types

Type I - Hard Soil: Sand gravel and well graded gravel and sand gravel mixtures without or with clay binder, and poorly graded clayey sands or sand clay mixtures (GB, CW, SB, SW, and SC) having value of N above 30, where N indicates the : standard penetration value.


Type II - Medium Soil :All soils having N between 10 and 30, and gravelly sands or poorly graded sands with little or no fines (SP) with N>15.

Type III - Soft Soil :All soils except SP with N

II. Seismic Analysis

The latest version of seismic zoning map of India given in the earthquake resistant design code of India [IS 1893 (Part 1) 2002] assigns four levels of seismicity for India in terms of zone factors. In other words, the earthquake zoning map of India divides India into 4 seismic zones (Zone 2, 3, 4 and 5) unlike its previous version which consisted of five zones for the country. According to the present zoning map, Zone 5 expects the highest level of seismicity whereas Zone 2 is associated with the lowest level of seismicity. Table I shows the Zone factors.

1 able	e 1 Zone Factor
Z	Zone Factor
Zone Type	Zone Factor
V	0.36
IV	0.24
III	0.16
III	0.1

Fig 1 Seismic Zone of India Objectives of the Research

- The main goal is to estimate and assess the building's seismic response, then evaluate and design using ETABS considering two different soil condition namely Hard soil and Medium soil.
- G+11 building modelling and application of various loads on ETABS, load calculations

owing to various loading combinations, analysis, and structure design on ETABS.

- Comparison of results of earthquake load applied on the structure for two different zones by ETABS and manual calculations both by an equivalent static method.
- Studying the responses, shear forces, bending moment, seismic forces, and node displacement, and restricting them by applying appropriate properties and materials, then assigning them again.

III. Literature Survey

Abhishek Mishra et.al (2022) research paper analyzed and compared the seismic response of a G+15 storey RCC frame structure with variable soil conditions (Hard and Soft soil) for seismic Zone IV. Both models were analysed in STAAD Pro V8i software using the Equivalent Static method of seismic analysis and the response of the model was examined in terms of the maximum storey displacement, base shear and story drift.

When compared to both Soft and Hard soil, the base shear value was more in the soft soil. When compared to both soft and hard soil the story drift value is more in the soft soil. The value of storey displacement increases as the stiffness property of the soil stratum decreases, so it was highest for model M1 with soft soil and lowest for model M2 with hard soil.

B. Ramakrishna et.al (2022) research paper aimed to present the analysis of a multi-stored building [G+5] using STAAD Pro by considering different seismic zones for all type of loads (Seismic load, Dead load, Live load and Wind load) and possible load combinations was performed as per Indian codes. The seismic analysis was done under different zones which are Zone-II, Zone-III, Zone-IV, Zone-V and also zone factor values was considered as per IS 18932002 (Part-1). Results were compared on the values of shear, bending moment and deflection for different zones.

Results stated that shear force, bending moment and deflection values for Zone III increased by 60% when compared to Zone II. Shear force, bending moment and deflection values for Zone IV increased by 24% when compared to Zone III. Shear force, bending moment and deflection values for Zone V increased by 50% when compared to Zone IV. For the same loading condition Zone V having more shear force, bending moment and deflection values. As comparing the results zone II having lower shear force, bending moment and deflection values.

Gourav B N et.al (2021) research paper conducted time history, response spectrum and p-delta analyses using Etabs software to study the effects of different soil types and seismic zones for a high-rise building of G+ 30 storey. In the research, a total of 12 models were analyzed for various soils types and seismic zones are systematically compared and discussed for a seismic performance of multistory building. The obtained results were analyzed and compared to determine the most suitable condition for the construction of a given high-rise building to have maximum service life.

Results stated that as the seismicity of the building increases care should be taken by the structural engineers to counter the seismic energy and to safeguard the building. With the change in soil property from hard to medium and from hard to soft the lateral deflection was increased. In Seismic Zone -2, 3 & 5 the values of maximum Shear forces & maximum bending moment are decreasing in hard soil strata when compared with soft soil strata & found the least for the same.

IV. METHODOLOGY

Step 1: Research paper from different authors are summarized in this section who have focused towards analyzing multi storey high rise structures considering seismic loads with different zones and soil condition Step 2: In order to initiate the modelling of the case study, firstly their's need to initialize the model on the basis of defining display units on metric SI on region India as ETABS supports the building codes of different nations. The steel code was considered as per IS 800:2007 and concrete design code as per IS 456:2000.

lodel Initialization		
nitialization Options		
O Use Saved User Default Settings		0
O Use Settings from a Model File		0
Use Built-in Settings With:		
Display Units	Metric SI	~ 0
Region for Default Materials	India	~ ()
Steel Section Database	Indian	\sim
Steel Design Code	IS 800:2007	~ ()
Concrete Design Code	IS 456:2000	~ ()
ОК	Cancel	
ОК	Cancel	

Fig 2 Model Initialization

Step 3: ETABS provides the option of modelling the structure with an easy option of Quick Template where the grids can be defined in X, Y and Z direction. Here in this case, 5 bays in considered in both X and Y direction with a constant spacing of 4m making the model symmetrical in nature. G+ 11 storey structure is considered with typical storey height of 3.2 m and Bottom storey height of 3.2 m.

rid Dimensions (Plan)		Story Dimens	sions		
Uniform Grid Spacing		 Simple 	e Story Data		
Number of Grid Lines in X Direction	5	Numb	ber of Stories	12	
Number of Grid Lines in Y Direction	5	Туріс	cal Story Height	3.2	m
Spacing of Grids in X Direction	4	m Botto	om Story Height	3.2	m
Spacing of Grids in Y Direction	4	m			
Specify Grid Labeling Options	Grid Labels				
O Custom Grid Spacing		⊖ Custo	om Story Data		
Specify Data for Grid Lines	Edit Grid Data	Spec	ify Custom Story Data	Edit Story Data	
dd Structural Objects	HIII HIII	s Flat Slab	Flat Slab with	Waffle Slab Two Wa	
	etaggerea rias		Perimeter Beams	Ribbed	

Fig 3 New Model Quick Template

Step 4: Next step is to define material properties for concrete and steel. Here in this case study, M30 concrete and rebar HYSD 415 is considered and its predefined properties are available in the ETABS application.

Material Name	M30		
Material Type	Concrete		~
Directional Symmetry Type			
Material Display Color	Change		
Material Notes	Modify	/Show Notes	
Hateliai Notes	Modily	7 Show Notes	
Material Weight and Mass			
 Specify Weight Density 	Spec	ify Mass Density	
Weight per Unit Volume		24.9926	kN/m³
Mass per Unit Volume		2548.538	kg/m³
Mechanical Property Data			
Modulus of Elasticity, E		27386.13	MPa
Poisson's Ratio, U	0.2		
Coefficient of Thermal Expansion, A	0.000013	1/C	
Shear Modulus, G		11410.89	MPa
Design Branats Data			
Design Property Data	laterial Property	Decise Data	
Modily/ Show M	latenal Property	Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Time D	ependent Prope	rties	
Modulus of Rupture for Cracked Deflect	tions		
 Program Default (Based on Cond 		n Code)	
O User Specified			

Fig 4 Defining Properties of Concrete M30.

Abhishek Thakur et al Int J Sci Res Civil Engg. January-February-2023, 7 (1): 29-47

General Data			
Material Name	HYSD415		
Material Type Rebar			\sim
Directional Symmetry Type	Uniaxial		
Material Display Color		Change	
Material Notes	Mod	ify/Show Notes	
Material Weight and Mass			
Specify Weight Density	🔾 Sp	ecify Mass Density	
Weight per Unit Volume		76.9729	kN/m³
Mass per Unit Volume	7849.047	kg/m³	
Mechanical Property Data			
Modulus of Elasticity, E		200000	MPa
Coefficient of Thermal Expansion,	A	0.0000117	1/C
Design Property Data			
Modify/Show	Material Proper	y Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Time	Dependent Pro	perties	

Fig 5 Defining Properties of Rebar HYSD 415

Step 5: Defining section properties for Beam, Column. Beam size of 400x300mm, Column size of 500x300mm and Slab size of 150 mm is considered in the study.

Property Name	BEAM			
Material	M30	M30 ~		2
Notional Size Data	Modify/S	how Notional Size		3
Display Color		Change		ě-+
Notes	Modif	y/Show Notes		
Shape				
Section Shape	Concrete Rec	otangular	~	
Depth		400	mm	Currently Default Reinforcement
Source: User Defined				Property Modifiers Modify/Show Modifiers
Width		300	mm	
				Modify/Show Rebar
				ОК
	Show Section Propertie	s		Cancel

Fig 6 Defining the section properties of Beam

General Data				
Property Name	COLUMN			
Material	M30		×	2
Notional Size Data	Modify/Sh	iow Notional Size		• •
Display Color		Change		↓ ↓ ↓ ↓
Notes	Modify	/Show Notes		• •
Shape				• • •
Section Shape	Concrete Rect	angular	~	
Section Property Source Source: User Defined Section Dimensions				Property Modifiers Modify/Show Modifiers
Depth		500	mm	Currently Default
Width		300	mm	Reinforcement
				Modify/Show Rebar
				ОК
	Show Section Properties	L		Cancel

Fig 7 Defining Properties of Column

Property Name	SLAB INDI	AN	
Slab Material	M30		
Notional Size Data	Modify/	Show Notional Si	
Modeling Type	Shell-Thin		~
Modifiers (Currently Default)		Modify/Show	
Display Color		Change	
Property Notes		Modify/Show	
Thickness	Slab	150	
Туре	Slab	_	~

Fig 8 Defining the Properties of Shell-thin slab

Step 6: Assigning Fixed Support at bottom of the structure in X, Y and Z direction in both the considered cases.

Model Explorer Model Display Tables Reports	X Plan View - Base - Z =	0 (m)			• ×	3-D View	•
Model Project apout Snucture Layout Snucture Layout Snuctural Objects Groups Loads Named Output tems Named Plots		B			E	Foint Assignment - Rettraints	
	4	×	*	ж	*	Pestnarta in Global Directions Translation X Relation about X Translation Y Relation about Y Translation Z Relation about Z	
	3 ×	ж	*	*	*	Fait Restarts	
	2 *	×	×	*	*		
	A A A	- ×	*	*	*		

Fig 9 Assigning Fixed Support

Step 7: Defining Load cases for dead load, live load and seismic analysis for X and Y Direction.

Load Case Name	Load Case Type		Add New Case
Dead	Linear Static		Add Copy of Case
Live	Linear Static		Modify/Show Case
Modal	Modal - Eigen		Delete Case
EQ X	Response Spectrum	*	
EQ Y	Response Spectrum		Show Load Case Tree
		*	
			ОК
			Cancel

Fig 10 Defining Load Cases

Step 8 Defining Seismic Loading as per IS 1893: 2016 Part I.

E Load Cases

 \times

Abhishek Thakur et al Int J Sci Res Civil Engg. January-February-2023, 7 (1): 29-47

X Dir Y Dir Seismic Zone Factor, Z X Dir + Eccentricity Y Dir + Eccentricity Per Code X Dir - Eccentricity Y Dir - Eccentricity	
X Dir - Eccentricity Y Dir - Eccentricity	
User Defined	~
Ecc. Ratio (All Diaph.) Site Type II	~
Overwrite Eccentricities Overwrite Importance Factor, I 1.5	
Story Range Time Period	
Top Story Story12 V O Approximate Ct (m) =	
Bottom Story Base V O Program Calculated	
○ User Defined T =	sec

Fig 11 Seismic Loading for the Case Jabalpur for Soil Type II

Direction and Eccentricity		Seismic Coefficients	
X Dir X Dir + Eccentricity X Dir - Eccentricity Ecc. Ratio (All Diaph.) Overwrite Eccentricities	Y Dir Y Dir + Eccentricity Y Dir - Eccentricity Overwrite	Seismic Zone Factor, Z Per Code User Defined Site Type Importance Factor, I	0.36 I 1.5
tory Range		Time Period	
Top Story	Story12 V	O Approximate Ct (m) =	=
Bottom Story	Base ~	Program Calculated	
actors		◯ User Defined T =	sec
Response Reduction, R	5		

Fig 12 Seismic Loading for the Case Bhuj for Soil Type I

Abhishek Thakur et al Int J Sci Res Civil Engg. January-February-2023, 7 (1): 29-47

			Fu		Damping Rati	0
Function Name	BHUJ			0.0)5	_
arameters			Defined Function	on		
Seismic Zone	V	~	Period		Accelerat	ion
Seismic Zone Factor, Z	0.36		0	_	0.036	
Importance Factor , I	1		0	1	0.09	
Soil Type	1	~	0.4		0.09 0.06	
Response Reduction Factor, R	5		0.8		0.045 0.036	
			1.2 1.4		0.03 0.0257	
Convert to User	Defined		1.6	-	0.0225	
unction Graph			Pl	ot Opti	ons	
E-3					ar X - Linear Y	
105 _			0) Line	ar X - Log Y	
90 - 75 - 1			0) Log	X - Linear Y	
60 -			0) Log	X - Log Y	
45						
30 -						
0					ОК	
0.0 1.0 2.0 3.0 4.0	5.0 6.0 7.0 8.	.0 9.0 10.0			Cancel	

Fig 13 Defining Response Spectrum Analysis as per IS 1893-2016.

Step 9: Conducting the model check for both the cases in ETABS

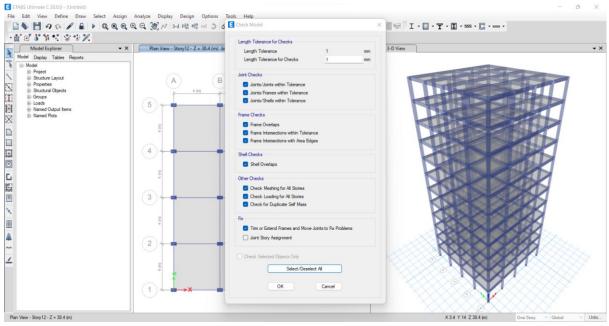
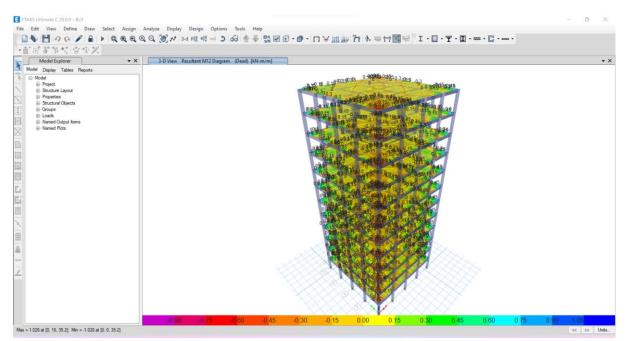
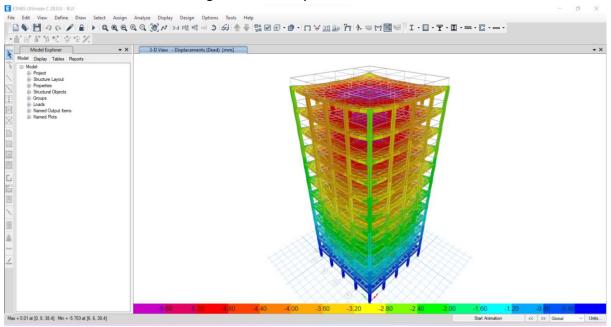
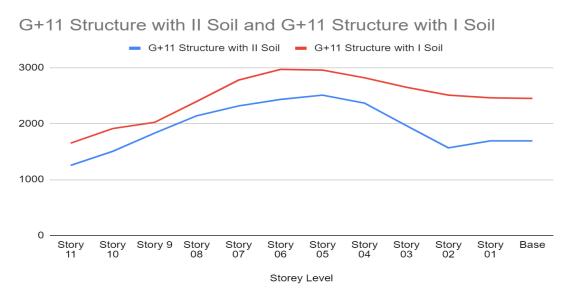




Fig 14 Model Check

Step 10: Analyzing the structure for dead load, stress analysis and displacement.

Fig 15 Stress Analysis for Dead Load

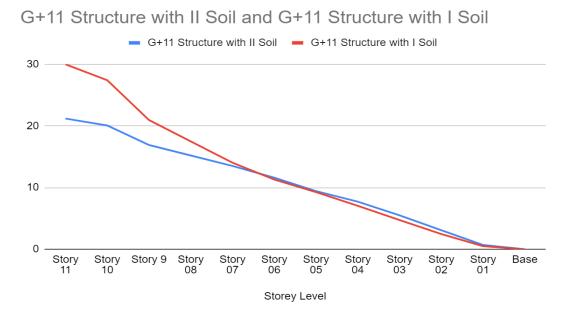

Fig 16 Storey Displacement Table 2 Geometrical Specifications of the Structure

Geometrical Specification		
Particulars of Item	Properties	
Number of Storey	G+11	
Total height of Structure	38.4m	
Typical Storey height	3.2m	
Bottom Storey Height	3.2m	

Floor Diaphragm	Rigid	
Number of Grid Lines in X-direction	5	
Number of Grid Lines in Y-direction	5	
Spacing of Grids in X-direction	4m	
Spacing of Grids in Y-direction	4m	
Beam Size	400x300mm	
Beam Shape	Rectangular	
Column Size	500x300mm	
Column Shape	Rectangular	
Slab Depth	150mm	
Slab Type	Thin Shell	

Story Shear in kN

Storey Shear in kN				
G+11 Structure with II Soil	G+11 Structure with I Soil			
1254.304	1650.849			
1504.689	1910.848			
1830.732	2022.298			
2138.652	2394.417			
2315.94	2777.447			
2432.479	2968.719			
2508.256	2956.351			
2366.272	2818.154			
1962.451	2648.438			
1566.039	2508.267			
1691.523	2460.222			
1691.523	2450.222			
· · · · · · ·	G+11 Structure with II Soil 1254.304 1504.689 1830.732 2138.652 2315.94 2432.479 2508.256 2366.272 1962.451 1566.039 1691.523			

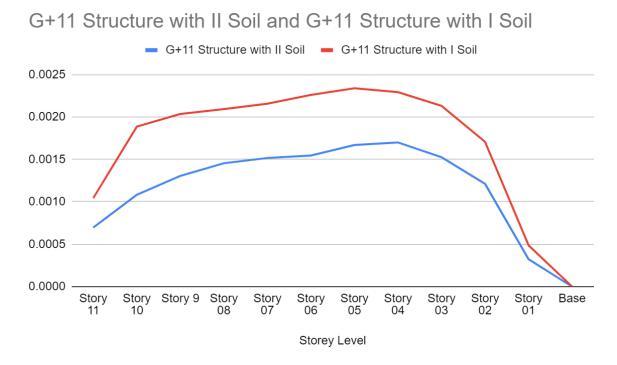


Story Shear in kN

Discussion: Story shear is the graph showing how much lateral (read: horizontal) load, be it wind or seismic, is acting per story. The lower you go, the greater the shear becomes. Story Shear was maximum at 6th Story in both the cases.

Storey Displacement in mm			
Storey Level	G+11 Structure with II Soil	G+11 Structure with I Soil	
Story 11	21.187	29.98	
Story 10	20.063	27.404	
Story 9	16.898	20.939	
Story 08	15.198	17.484	
Story 07	13.503	14.017	
Story 06	11.589	11.291	
Story 05	9.415	9.252	
Story 04	7.714	7.038	
Story 03	5.497	4.732	
Story 02	3.077	2.451	
Story 01	0.681	0.492	
Base	0	0	

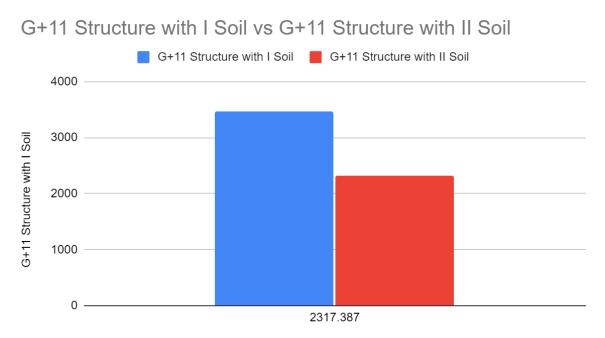
Story Displacement in mm



Story Displacement in mm

Discussion: It is found that with the increase in zones the displacement also increases for each soil type. The maximum value of displacement for hard soil is 8.7,13.9, 20.8, 29.8mm. For medium Soil 11.8, 18.9, 28.3, 42.4mm while for Soft soil it is 13.6, 21.7, 32.6, 48.9mm. It is observed that for zone II to zone III the increment is by around 37% while for zone III t to V the percentage reduces by 22.8%

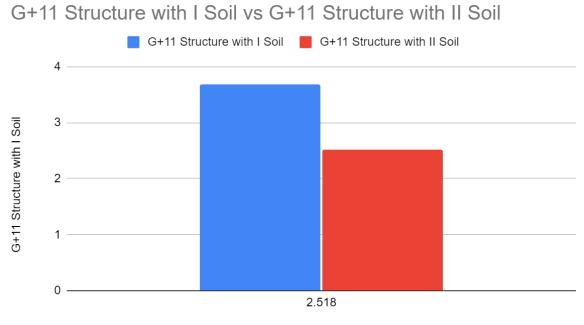
Story Drift in m				
Story Drift in m				
Storey Level	G+11 Structure with II Soil	G+11 Structure with I Soil		
Story 11	0.000697	0.001044		
Story 10	0.001083	0.001887		
Story 9	0.001306	0.002036		
Story 08	0.001455	0.002094		
Story 07	0.001517	0.002157		
Story 06	0.001546	0.002261		
Story 05	0.00167	0.002339		
Story 04	0.0017	0.002293		
Story 03	0.001526	0.002131		
Story 02	0.001212	0.001708		
Story 01	0.000323	0.000486		
Base	0	0		


Story Drift in m

Discussion: Storey drift is considered as a drift of a particular level with respect to a level below. The above table shows the Zone wise comparison of storey drift with respect to the soil type. The result show that the value of storey drift increases with the increasing zones. It is observed that the Storey drift increases by more than 30% (zone to zone) for symmetric structure for all the soil types.

Base	Shear	in	kN
------	-------	----	----

Base Shear in kN		
G+11 Structure with II Soil G+11 Structure with I Soil		
2317.387	3476.294	


G+11 Structure with II Soil

Base Shear in kN

Discussion: "Base Shear is an estimate of the maximum expected lateral force that will occur due to seismic ground motion at the base of a structure". It is observed that the base shear of the building increases with the increasing seismic Zones. Base SHear was maximum fro Structure with Soil Type I as 3476.294 kN and 2317.387 kN for structure in II soil type.

Natural TIme Period in sec		
G+11 Structure with II Soil	G+11 Structure with I Soil	
2.518	3.69	

G+11 Structure with II Soil

Discussion: Model with II soil was least affected in comparison to the other model

V. CONCLUSION

From the above results it is concluded that;

Base Shear

"Base Shear is an estimate of the maximum expected lateral force that will occur due to seismic ground motion at the base of a structure". It is observed that the base shear of the building increases with the increasing seismic Zones. Base SHear was maximum for Structure with Soil Type I as 3476.294 kN and 2317.387 kN for structure in II soil type. The seismic response such as base shear for Bhuj earthquake are found to be more by 45.44% than Jabalpur earthquake by using time history analysis.

Story Displacement

It is found that with the increase in zones the displacement also increases for each soil type. The maximum value of displacement for hard soil is 8.7,13.9, 20.8, 29.8mm. For medium Soil 11.8, 18.9, 28.3, 42.4mm while for Soft soil it is 13.6, 21.7, 32.6,

48.9mm. It is observed that for zone II to zone III the increment is by around 37% while for zone III t to V the percentage reduces by 22.8%. The top story displacement of Jabalpur and Bhuj earthquake by response spectrum method is found to be 33.15% and 34.26% higher.

Story Drift

Storey drift is considered as a drift of a particular level with respect to a level below. The above table shows the Zone wise comparison of storey drift with respect to the soil type. The result show that the value of storey drift increases with the increasing zones. It is observed that the Storey drift increases by more than 30% (zone to zone) for symmetric structure for all the soil types. The values of the storey drifts for all the stories for all the effects are found to be within the permissible limits specified as per IS: 1893-2002 (Part I).

VI. Future Scope

- Further research can be extended to different zones of India.
- Further research can even be extended using different analytical tools such as SAP 2000 or STAAD.Pro and identify the most appropriate damping measure to understand the reaction of structure and recommend necessary damping measure.

VII. REFERENCES

- [1]. Tejaswini Wagh, Disha Patel, Krupa Phakatkar, Dipti Yenegure, Miss.Tejashri S. Gulve,
 [SEISMIC ANALYSIS OF MULTISTOREY BUILDING (G+9) BY USING STAAD-PRO], |
 Volume 6 || Issue 6 || June 2021 || ISSN (Online)
 2456-0774 INTERNATIONAL JOURNAL OF
 ADVANCE SCIENTIFIC RESEARCH AND
 ENGINEERING TRENDS.
- [2]. Vinay Kumar, [ANALYSIS OF G+10 RC BUILDING IN DIFFERENT SEISMIC ZONE], International Research Journal of Modernization in Engineering Technology and Science Volume:03/Issue:06/June-2021.
- [3]. Sagar Laxman Belgaonkar, Ravi Basavaraj Tilaganji, Priyanka P Hegade, Raghavi B Indaragi, Karishma Z Jamadar and Naveen N Biradar, [Comparative Study of Story Displacement and Stiffness under Different Seismic Zones for RC Structure], International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 10 Issue 07, July-2021.
- [4]. P. HariharaVenkata Nagasai, V. Bhargav Reddy, Rama Krishna Kolli and Lingeshwaran Nagarathinam, [Comparison Between Seismic and Non Seismic Analysis of Multistorey Building], International Journal of Recent

Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-7, Issue-6C2, April 2019.

- [5]. Abhishek Mishra, Anjani Kumar Tiwari and Kumar Vanshaj, [TO PERFORM COMPARATIVE STUDY OF MULTI STOREY BUILDING IN DIFFERENT SOIL CONDITIONS], International Research Journal of Modernization in Engineering Technology and Science, Volume:04/Issue:03/March-2022.
- [6]. Atul N.Kolekar, Y.P.Pawar, Dr. C. P. Pise, D. D. Mohite, S. S. Kadam and C. M. Deshmukh,
 [Comparative study of Performance of RCC Multi-Storey Building for Koyna and Bhuj Earthquakes], Int. Journal of Engineering Research and Application, ISSN : 2248-9622, Vol. 7, Issue 5, (Part -2) May 2017, pp.45-52.
- [7]. Atif Mehmood and Parveen Singh, [STUDY OF SEISMIC ANALYSIS OF MULTI-STOREY BUILDING], International Journal of Scientific Development and Research (IJSDR), June 2018 IJSDR | Volume 3, Issue 6, ISSN: 2455-2631.
- [8]. Archna Tiwari and Richa Agarwal, [Study of Multi Storey Building for Different Soil Type by Dynamic Analysis], International Journal of Engineering Science and Computing, September 2017.
- [9]. Kaveri, Guramma, Muttamma, Neelamma Kawati and Saksheshwari, [Analysis Of A Multi-storied Building In Different Soil Conditions With Different Seismic Zones Of India], SSRG International Journal of Civil Engineering Volume 6 Issue 5, 11-15, May 2019 ISSN: 2348 – 8352.
- [10]. M R Vyas and Dr. S P Siddh, [COMPARATIVE STUDY OF SEISMIC RESPONSE OF **STRUCTURES** IN DIFFERENT SEISMIC ZONES OF INDIA CONSIDERING DIFFERENT TYPES OF SOIL], International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 5, May 2018, pp. 751-760.

- [11]. Tennu Syriac, [Comparative Study on the Behaviour of a Multi-Storeyed Building for Regular & Irregular Plan Configuration], INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY, October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002.
- [12]. Mukesh Sharma, Girish Sharma and Ankush Tanta, [COMPARATIVE STUDY AND SEISMIC ANALYSIS OF MULTI-STOREY BUILDING WITH AND WITHOUT SHEAR WALLS USING STAAD. Pro], International Journal of Research and Analytical Reviews (IJRAR), 2018 IJRAR August 2018, Volume 5, Issue 3.
- [13]. Pallavi G. A and Nagaraja C, [COMPARATIVE STUDY OF SEISMIC ANALYSIS OF MULTISTORIED BUILDING WITH SHEAR WALL AND BRACINGS], International Journal of Research in Engineering and Technology, Volume: 06 Issue: 08 | Aug-2017.
- [15]. Rahul Kumar Thakur, Mayank Kushwaha, Vikrant Sharma and R. K. Vishwakarma,
 [Comparative Seismic Analysis of RC G+13 MultiStorey Building Frame], International Research Journal of Engineering and Technology (IRJET), Volume: 06 Issue: 04 | Apr 2019.
- [16]. Ch.Sandeep Reddy and V.Aparna Reddy,
 [DESIGN AND COMPARATIVE STUDY ON MULTI-STORY STRUCTURE IN SEISMIC ZONES], 10th International Conference of Recent Innovations in Science, Engineering and Management, 7th July 2017.

[17]. B. Ramakrishna, G. Shwetha and S. Durga Venkata DInesh, [Analysis of Multi-Storied Building in Different Seismic Zones using STAAD Pro], IOP Conf. Series: Earth and Environmental Science 982 (2022) 012074.

Cite this article as :

Abhishek Thakur, Ankita Singhai, "Analysis of a Tall Structure Under Seismic Loading of Two Different Regions Using ETAB", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 7 Issue 1, pp. 29-47, January-February 2023.

URL : https://ijsrce.com/IJSRCE22714

