

Original Article International Journal of Scientific Research in Civil Engineering

Available online at : **www.ijsrce.com** © 2023 | IJSRCE | Volume 7 | Issue 5 | ISSN : 2456-6667

Analysis of A Tall Structure Considering Opening Wall Conditions Using ETABS Varsha Ahirwar¹, Rahul Sathbhiya²

P.G. Scholar¹, Assistant Professor²

Department of Civil Engineering, Infinity Management and Engineering College Sagar, Madhya Pradesh, India

ARTICLEINFO	ABSTRACT
Article History: Accepted: 30 Sep 2023 Published: 20 Oct 2023	Shear walls are structural systems which provide stability to structures from lateral loads like wind, seismic loads. An attempt is made to apply the finite element modelling in analyzing and exploring the behavior of shear wall with opening under seismic load actions. Shear walls are generally located at the sides of buildings or arranged in the form of core that houses
Publication Issue Volume 7, Issue 5 September-October-2023 Page Number 138-153	 stairs and lifts. The properties of these seismic shear walls dominate the response of the buildings, and therefore, it is important to evaluate the seismic response of the shear walls appropriately. Due to functional requirements such as doors, windows, and other openings, a shear wall in a building contains many openings In this research, the main focus is to determine effectiveness of shear wall with vertical opening and staggered opening in regular and irregular buildings under earthquake loads with the help of finite element software, ETABS. using the Response Spectrum method. The comparative results showed that the time period, displacement, base shear and stress distribution around the openings depend on the arrangement of openings. Finally, the staggered arrangement of openings in shear walls is suggested to be applied in practice, since it satisfies both the architectural and the seismic requirements. Keywords : ETABS, Seismic behavior, Storey drift, Shear Wall, Staggered Openings, Seismic Loads, Finite Element Analysis and Response Spectrum Method

I. INTRODUCTION

Shear walls are vertical structural elements for resisting the lateral loads that may be induced by the effect of wind and earthquakes. Shear wall is a structure considered to be one, whose resistance to horizontal loading is provided entirely by them. Introduction of shear walls in a building is a structurally efficient solution to stiffen the building because they provide the necessary lateral strength and stiffness to resist horizontal forces. Shear walls generally start at the foundation level and are continuous throughout the building height. They are generally provided along both length and width of

the building and are located at the sides of the buildings or arranged in the form of core. Shear walls may have one or more openings for functional reasons.

The size and location of shear walls is extremely critical. They must be symmetrically located in plan to reduce the effect of twisting in buildings. Properly designed and detailed buildings with shear walls have shown good performance in past earthquakes. Also the strong earthquakes recorded worldwide in the past have shown that the damages and certain failure mechanisms of shear walls depend on a series of factors such as, the shape in plan, dimensions of the walls and openings, reinforcement and the openings layout, site condition, type of earthquake and strain rates. Even if failure modes have been extensively researched, there are still certain failure modes which have to be investigated further. One such is the case of shear walls with staggered openings.

Irregularity of Building

Many buildings in the present scenario have irregular configurations both in plan and elevation. This in future may subject to devastating earthquakes. In case, it is necessary to identify the performance of the structures to withstand against disaster for both new and existing one. Structures experience lateral deflections under earthquake loads. Magnitude of these lateral deflections is related to many variables such as structural system, mass of the structure and mechanical properties of the structural materials. Reinforced concrete multi-storied buildings are very complex to model as structural systems for analysis. The current version of the IS: 1893 (part I) -2002 requires that practically all multistoried buildings be analyzed as threedimensional systems. This is due to the irregularities in plan or elevation or in both. The paper discusses the performance evaluation of RC (Reinforced Concrete) Buildings with irregularity. Structural

irregularities are important factors which decrease the seismic performance of the structures.

Types of Irregularity

Fig 1 : Vertical Irregularities

II. Objectives of the Research

- To determine the effect of vertical and staggered openings in RC shear wall in a regular building under seismic loads
- To study the behavior of vertical and staggered openings in RC shear wall in a irregular building under seismic loading
- Comparison of effect of openings in regular and irregular building

III. Review of Literature Survey

Akash Malika et.al (2023) objective of the research paper was to determine the seismic behaviour of staggered shear wall models and staggered X bracing models when subjected to historical earthquake data with the assistance of nonlinear time history analysis carried out by ETABS software.

Results stated that base shear of the structure with staggered X bracing is 37% lower than the base shear of the structure with staggered shear walls. When

compared to staggered X bracing structures, staggered shear walls have a fundamental time period that is 62% shorter. However, because the values are lower, the structure with staggered shear walls is stiffer. Therefore, the structure with the staggered X bracing can perform better than the structure with the staggered shear wall because of the higher value of time period. When compared to the staggered X bracing structure, staggered shear walls have a frequency that is 62% higher. When compared to the structure with staggered X bracing, the overall dynamic performance of the structure that has staggered shear walls is superior.

Vinodkumar S A et.al (2023) objective of the research paper was to identify the optimum location of shear wall in irregular buildings with different irregular ratios by comparing structures with shear walls at various locations like, at the edges, at the corners and at both the corner and the edges. Further the dynamic analysis was carried out by considering optimum location of shear wall and replacing it with staggered shear wall. The effectiveness of staggered shear wall was analyzed by comparing the results with the shear wall structure having regular openings considering same percentage of openings in both the models using ETABS v18 software.

Model with shear wall at edges of the structure shows 70% less displacement in regular structure and up to 50% less displacements in irregular structure models. Staggered shear wall structure shows 1.5% variation in storey displacement and 2.8% variation in storey drift ratio in comparison with the structure having no openings in the shear wall. Shear wall structure having regular openings in shear wall shows 49 % variation in storey displacements and 40 % variation in storey drift ratio in comparison with the structure having no openings in the shear wall. Hence results confirmed that staggered shear walls

are more effective than the shear walls with regular openings. Staggered shear wall performs very well under seismic activity without affecting the stiffness of the building largely.

Steps involved in Modelling and Analysis

Step 1: Research paper from different authors was summarized in this section who have focused towards analyzing multi storey high rise structures considering seismic loads with different zones and soil condition.

Step 2: In order to initiate the modelling of the case study, firstly their's need to initialize the model on the basis of defining display units on metric SI on region India as ETABS supports the building codes of different nations. The steel code was considered as per IS 800:2007 and concrete design code as per IS 456:2000.

alization Options		
Use Saved User Default Settings		0
O Use Settings from a Model File		0
O Use Built-in Settings With:		
Display Units	Metric SI	\sim
Region for Default Materials	India	\sim
Steel Section Database	Indian	÷
Steel Design Code	IS 800:2007	~
Concrete Design Code	IS 456:2000	~

Fig 2 Model Initialization

Step 3: ETABS provides the option of modelling the structure with an easy option of Quick Template where the grids can be defined in X, Y and Z direction. Here in this case, 7 bays in X direction and 5 bays in Y direction with a constant spacing of 3.5m in both X and Y direction making the model symmetrical in nature. G+12 storey structure is considered with typical storey height of 3.2 m and Bottom storey height of 2.5 m.

Grid Dimensions (Plan)		Story Dimensions	
Uniform Grid Spacing		Simple Story Data	
Number of Grid Lines in X Direction	7	Number of Stories	13
Number of Grid Lines in Y Direction	5	Typical Story Height	3.2 m
Spacing of Grids in X Direction	3.5 m	Bottom Story Height	2.5 m
Spacing of Grids in Y Direction	3.5 m		
Specify Grid Labeling Options	Grid Labels		
O Custom Grid Spacing		O Custom Story Data	
Specify Data for Grid Lines	Edit Grid Data	Specify Custom Story Data	Edit Story Data
Add Structural Objects			

Fig 3 New Model Quick Template

Fig 4 Grid Plan of the Structure

Step 4: Next step is to define the material properties of concrete and steel. Here in this case study, green concrete and rebar HYSD 550 is considered and its predefined properties are available in the ETABS application.

enals	Click to:
Fe345	Add New Material
HYSD415 Tendon	Add Copy of Material
Masonry	Modify/Show Material
	Delete Material
	ок

Fig 5 Defining Materials

Material Name	M30		
Material Type	Concrete		~
Directional Symmetry Type	Isotropic		
Material Display Color		Change	
Material Notes	Modi	fy/Show Notes	
Material Weight and Mass			
 Specify Weight Density 	O Spe	ecify Mass Density	
Weight per Unit Volume		24.9926	kN/m³
Mass per Unit Volume		2548.538	kg/m³
lechanical Property Data			
Modulus of Elasticity, E		27386.13	MPa
Poisson's Ratio, U		0.2	
Coefficient of Thermal Expansion, A		0.000013	1/C
Shear Modulus, G		11410.89	MPa
Design Property Data			
Modify/Show M	laterial Property	y Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Time D	ependent Prop	erties	
Nodulus of Rupture for Cracked Deflect	ions		
Program Default (Based on Cond	crete Slab Des	ign Code)	
 User Specified 			

Fig 6 Defining Properties of Concrete M30.

General Data			
Material Name	HYSD550		
Material Type Rebar Directional Symmetry Type Uniaxial Material Display Color Image: Color Material Notes Modify		~ I	
		dify/Show Notes	
		Material Weight and Mass	
 Specify Weight Density 	⊖ Spe	cify Mass Density	
Weight per Unit Volume		76.9729	kN/m³
Mass per Unit Volume		7849.047	kg/m³
Mechanical Property Data			
Modulus of Elasticity, E		200000	MPa
Coefficient of Thermal Expansion, A		0.0000117	1/C
Design Property Data			
Modify/Show M	laterial Property	/ Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Time De	ependent Prop	erties	

Fig 7 Defining Properties of Rebar HYSD 550

Material Name	Fe345		
Material Type Steel			\sim
Directional Symmetry Type	Isotropic		~
Material Display Color		Change	
Material Notes		Modify/Show Notes	
aterial Weight and Mass			
Specify Weight Density	O Sp	ecify Mass Density	
Weight per Unit Volume		76.9729	kN/m ³
Mass per Unit Volume		7849.047	kg/m³
echanical Property Data			
Modulus of Elasticity, E		210000	MPa
Poisson's Ratio, U		0.3	
Coefficient of Thermal Expansio	n, A	0.0000117	1/C
Shear Modulus, G		80769.23	MPa
esign Property Data			
Modify/Sh	ow Material Proper	ty Design Data	
dvanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Tir	me Depende <mark>nt</mark> Pro	perties	

Fig 8 Properties of Steel

Property Name	SLAB GREEN	_
Slab Material	GREEN	~
Notional Size Data	Modify/Show Notional Size	
Modeling Type	Shell-Thin	~
Modifiers (Currently Default)	Modify/Show	
Display Color	Change	
Property Notes	Modify/Show	
Туре	Slab	\sim
operty Data		
Thickness	125	mm

Fig 9 Properties of Slab

Step 5: Defining section properties for Beam, Column. Beam size of 350x300mm, Column size of 400x400mm and Slab size of 125 mm is considered in the study.

General Data				
Property Name	beam			
Material	M30		·	• 2 * •
Notional Size Data	Modify/Sh	ow Notional Size	1	3 0
Display Color		Change		
Notes	Modify	/Show Notes		• •
Shape				• • •
Section Shape	Concrete Rect	angular 🗸	/	
Section Property Source				
Source: User Defined				Property Modifiers
Section Dimensions				Modify/Show Modifiers
Depth		350	mm	Currently Default
Model		200]	Reinforcement
width		300	mm	Modify/Show Rebar
				ОК
	Show Section Properties			Cancel

Fig 10 Defining the section properties of Beam

General Data			
Property Name	column		
Material	M30	×	2
Notional Size Data	Modify/Show Notional	Size	• •
Display Color	Chang	ie	•
Notes	Modify/Show Note:	s	• •
Shape			• • •
Section Shape	Concrete Rectangular	~	
Section Property Source			
Source: User Defined			Property Modifiers
Section Dimensions			Modify/Show Modifiers
Depth	400	mm	Currently Derault
Width	400	mm	Modify/Show Rebar
			ок
	Show Section Properties		Cancel

Fig 11 Defining Properties of Column

	-		
Property Name	Slab1		
Slab Material	M30	~	
Notional Size Data	Modify/Show N	lotional Size	
Modeling Type	Shell-Thin	~	
Modifiers (Currently Default)	Modify/S	šhow	
Display Color		Change	
Property Notes	Modify/S	Show	
Туре	Slab	~	
Inickness		<u>40</u>	mm

Fig 12 Defining the Properties of slab

aerierai Data		
Property Name	Wall1	
Property Type	Specified 🗸	
Wall Material	Masonry 🗸	
Notional Size Data	Modify/Show Notional Size	
Modeling Type	Shell-Thin 🗸	
Modifiers (Currently Default)	Modify/Show	
Display Color	Change	
Property Notes	Modify/Show	
roperty Data		
Thickness	200	mm
Include Automatic Rigid Zone	Area Over Wall	

Fig 13 Properties of Masonry Wall

Step 6: Assigning Fixed Support at bottom of the structure in X, Y and Z direction in both the considered cases.

Fig 14 Assigning Fixed Support

Step 7: Defining Load cases for dead load, live load and seismic analysis for X and Y Direction.

Fig 15 Defining Load Cases

Step 8 Defining Seismic Loading as per IS 1893: 2016 Part I.

Direction and Eccentricity		Seismic Coefficients		
🗹 X Dir	Y Dir	Seismic Zone Factor, Z		
X Dir + Eccentricity	Y Dir + Eccentricity	Per Code	0.24	~
X Dir - Eccentricity	Y Dir - Eccentricity	User Defined		
Ecc. Ratio (All Diaph.)	0.05] Site Type	Ш	~
Overwrite Eccentricities	Overwrite	Importance Factor, I	1.5	
Story Range		Time Period		
Top Story	Story13 V	Approximate Ct (n	n) =	
Bottom Story	Base ~	Program Calculated		
		O User Defined	T =	sec
Factors				

Fig 16 Seismic Loading

Fig 17 Model Check

Step 10: Analyzing the structure for dead load, stress analysis and displacement.

Fig 18 Stress Analysis for Dead Load

Varsha Ahirwar et al Int J Sci Res Civil Engg. September-October-2023, 7 (5) : 138-153

Fig 19 Storey Drift

39428 00020

Fig 20 Storey Displacement

Model I

Fig Model II Model III

Fig Model III

IV. RESULTS AND DISCUSSION

Shear Force in kN/Storey No.

V. CONCLUSION

With the assistance of nonlinear time history analysis carried out by ETABS software, the focus of this study is on determining the seismic behaviour of staggered shear wall considering three different cases when subjected to historical earthquake data. The following conclusions follow from the analysis study that was presented earlier:

Time Period

The results show that for all of the models, the time period is greatest for mode-1. The time period for a shear wall structure without an opening is 0.531 seconds, 0.585 seconds for a vertical opening, and 0.591 seconds for a staggered opening, indicating that the time period increases when a shear wall is provided with an opening. When compared to shear wall structures with staggered opening, the time period for shear wall structures with staggered opening is longer with vertical opening and also without opening.

Storey Displacement

Storey displacement is the lateral movement of the structure caused by lateral force. It is observed that

due to the presence of staggered opened shear wall, it has less displacement compared to regular opened shear wall. By comparing the position of shear wall, the staggered opened shear wall at corner will shows the less displacement compared to shear wall at periphery for all models. The results shows that staggered frame have higher displacement compared to other models.

Shear Force

The variation of storey shear in the staggered shear wallconsidering three different models were tabulated respectively. The storey shear for staggered building in model III was found to be least by more than 48% in comparison to model I and 21% less than Model II.

VI. REFERENCE

- J.S.S.K. Vasa, K. Anil Kumar and Dr. V. Sowjanya Vani, [Seismic Performance of High Rise Building with Slits in Shear Wall Using E-TABS], International Journal of Innovative Research in Science, Engineering and Technology, Vol. 6, Issue 8, August 2017, ISSN : 2347-6710.
- [2]. Mohamed Safeer Kodappana and Priyanka Dilip P, [Study on Dynamic Behaviour of Shear walls with Staggered Openings in Irregular R.C. Framed Structures], 2017 IJSRSET | Volume 3 | Issue 2 | ISSN: 2395-1990.
- [3]. G.D. Pawar and V.B. Dawari, [Effect of Openings in Shear wall on Seismic Behaviour of RC Buildings], ASPS Conference Proceedings 1: 725-730 (2022).
- [4]. Yagya Raj Khatri and Dr. Prasenjit Saha, [Effect of Shear Wall in Seismic Performance of High-Rise Irregular RC Framed Building], International Journal of Science and Research (IJSR), Volume 10 Issue 7, July 2021, ISSN: 2319-7064.
- [5]. Dr. Hadi Hosseini, [Numerical Analysis of High Rise Building with Openings on Shear Wall], American Journal of Engineering Research

(AJER), Volume-6, Issue-2, pp-144-173, 2017, ISSN: 2320-0936.

- [6]. Udit Yaduwanshi, Kapil Soni and Dr. Sharad Kumar Soni, [Seismic Behaviour of RCC Shear Wall Building with Different Opening], Journal of Civil Engineering and Technology (JCIET) Volume 8, Issue 1, January - December 2022, pp. 1-12, Article ID: JCIET_08_01_001.
- [7]. Priyanka N and Satheesh kumar K R P, [Analysis of RC Shear Wall with Openings Subjected to Lateral loading], International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) Volume 5, Issue 2, May 2021, ISSN: 2581-9429.
- [8]. Jyoti M.Chavan, D.H.Tupe and Dr.G.R.Gandhe, [Study of Seismic Behaviour of Staggered Opening Shear Wall in Multistorey Building], International Research Journal of Engineering and Technology (IRJET), Volume: 07 Issue: 07 | July 2020, ISSN: 2395-0072.
- [9]. Amit kumar Yadav, Dr. Vikram Patil and Somanagouda Takkalaki, [Analysis of Tall Structures with and without Openings in Shear Walls], International Journal of Innovative Science, Engineering & Technology, Vol. 6 Issue 5, May 2019 ISSN: 2348 – 7968.

Cite this article as :

Varsha Ahirwar, Rahul Sathbhiya, "Analysis of A Tall Structure Considering Opening Wall Conditions Using ETABS", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 7, Issue 5, pp.138-153, September-October.2023 URL : https://ijsrce.com/IJSRCE123760