
Thanh Ngoc Huynh1, Linh Hoai Le2*, Tuan Hoang Dang3

1 Binh Thuan Department of Transport, Binh Thuan Province, Vietnam
2 Vietnam Aviation Academy, Ho Chi Minh City, Vietnam (Corresponding author)
3 Long An Department of Transport, Long An Province, Vietnam

ARTICLE INFO

Article History:
Accepted: 10 July 2024
Published: 30 July 2024

Publication Issue
Volume 8, Issue 4
July-August-2024

Page Number
112-120

ABSTRACT

The evaluation of expressway projects in the Mekong Delta and Eastern regions of Vietnam focuses on assessing the effectiveness of investments in terms of traffic safety and environmental impact under current climate change conditions. The primary objective is to analyze accident rates, assess the quality and availability of construction materials, and examine the environmental consequences of these infrastructure projects. The methodology employs a multi-criteria evaluation approach, integrating data from traffic incident reports, environmental impact assessments, and material quality tests. Results indicate a significant reduction in traffic accidents, with the rate decreasing from 5.2 to 3.1 incidents per 100 million vehicle kilometers traveled (VKT). However, environmental assessments reveal notable adverse impacts, including a 30% increase in water turbidity and a 20% reduction in local fish populations. Material quality evaluations show that 30% of soil samples and 50% of sand samples failed to meet required standards, leading to increased project costs by approximately 20%. The study concludes that while the investment in expressway projects has enhanced traffic safety, there are critical environmental and material quality issues that need to be addressed. Recommendations include implementing advanced traffic management systems, improving road safety measures, conducting rigorous environmental impact assessments, and securing high-quality construction materials from alternative sources. Addressing these challenges is essential for the success of future expressway projects, ensuring both economic growth and environmental sustainability.

Keywords - Expressway Projects, Traffic Safety, Environmental Impact, Investment Efficiency, Mekong Delta

I. INTRODUCTION

The current landscape of expressway projects in Eastern Vietnam and the Mekong Delta reflects significant strides in infrastructure development aimed at enhancing regional connectivity and economic growth.
Phan Thiet – Dau Giay segments represent crucial links in the Eastern corridor, facilitating transport between key economic zones (Fig. 1) [1-5]. Similarly, the Trung Luong – My Thuan and My Thuan – Can Tho expressways play pivotal roles in the Mekong Delta, a region vital for agricultural production and trade. Despite these advancements, numerous challenges have emerged during the implementation of these projects [6-9]. Key issues include delays due to material shortages, cost overruns, and significant safety concerns arising from the absence of emergency lanes and inadequate traffic management measures [10-13]. Environmental impacts, such as increased air and water pollution and disruptions to local ecosystems, have also been reported, exacerbated by the region's vulnerability to climate change.

**Fig. 1. Design Model of the Vinh Hao – Phan Thiet Expressway**

This study aims to evaluate the investment effectiveness of these expressway projects, focusing on traffic safety and environmental impact under the current climate change conditions. Specific objectives include analyzing accident rates, assessing the quality and availability of construction materials, and examining the environmental consequences of these projects. By providing a comprehensive evaluation, the research seeks to offer actionable insights and recommendations to improve the sustainability and safety of future infrastructure developments in Vietnam.

**II. MATERIALS AND METHODS**

**Materials**

The data sources for this study encompass a comprehensive collection of reports, project documents, and field surveys (Table I). Reports from various governmental and non-governmental agencies provided foundational information on the current state and historical progress of the expressway projects in the Eastern region and the Mekong Delta [14-23].

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SOURCE TYPE</strong></td>
</tr>
<tr>
<td><strong>Source Type</strong></td>
</tr>
<tr>
<td>Reports</td>
</tr>
<tr>
<td>Project Documents</td>
</tr>
<tr>
<td>Field Surveys</td>
</tr>
</tbody>
</table>

Project documents, including feasibility studies, design blueprints, and progress evaluations, were meticulously reviewed to gain insights into the planning and execution phases. Additionally, field surveys were conducted to gather real-time data on traffic flow, safety conditions, and environmental impacts. These surveys involved direct observations and measurements at key locations along the...
expressway routes, allowing for a detailed assessment of current conditions and identification of specific problem areas. The integration of these diverse data sources ensured a robust and multidimensional analysis, critical for evaluating the investment effectiveness in terms of traffic safety and environmental sustainability under the prevailing climate change conditions.

Methods

The evaluation methods employed in this study encompass a range of analytical approaches designed to thoroughly assess the expressway projects (Fig. 2).

- Traffic safety analysis was conducted to examine accident rates, identify high-risk areas, and evaluate the effectiveness of existing safety measures. This analysis involved the collection and examination of traffic incident reports, coupled with field observations to identify patterns and potential hazards. Environmental impact assessment (EIA) was utilized to evaluate the consequences of the expressway projects on local ecosystems and communities, particularly under the influence of climate change. The EIA process included both qualitative and quantitative measures, such as air and water quality testing, noise level monitoring, and assessments of wildlife habitat disruptions. Additionally, material quality evaluation focused on the suitability and durability of construction materials used in the projects. This involved laboratory testing of samples to ensure compliance with engineering standards and specifications, as well as field inspections to assess the condition of materials in situ. These combined methodologies provided a comprehensive evaluation framework, essential for determining the overall effectiveness and sustainability of the expressway investments.

Study area

The study area encompasses specific segments of the expressway projects in Eastern Vietnam and the Mekong Delta, focusing on the Vinh Hao – Phan Thiet and Phan Thiet – Dau Giay sections, as well as the Trung Luong – My Thuan and My Thuan – Can Tho expressways (Table II). The Vinh Hao – Phan Thiet segment spans a total length of 148 kilometers, with its construction completed in May 2023 after over 40 months of work (Fig. 3). Despite the progress, issues such as the lack of emergency lanes and incomplete drainage systems have been noted. The Phan Thiet – Dau Giay section, similarly problematic, faces challenges including insufficient lighting and inadequate signage, leading to significant traffic safety concerns. In the Mekong Delta, the Trung Luong – My Thuan expressway, stretching 51.5 kilometers and operational since 2022, has been critically evaluated for its traffic safety features,
particularly the absence of emergency lanes, which poses a high risk. My Thuan – Can Tho expressway, expected to be operational by early 2024, shares similar design characteristics with the Trung Luong – My Thuan segment and has undergone scrutiny to ensure it meets safety and environmental standards. Each of these segments was selected for detailed evaluation to provide a comprehensive understanding of the investment effectiveness, focusing on safety, environmental impact, and material quality under the current climate change conditions.

Fig. 3. Length of Expressway Routes

TABLE II HIGHWAY STATISTICS

<table>
<thead>
<tr>
<th>Expressway Segment</th>
<th>Length (km)</th>
<th>Completion Date</th>
<th>Key Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinh Hao – Phan Thiet</td>
<td>148</td>
<td>May-23</td>
<td>Lack of emergency lanes, incomplete drainage systems</td>
</tr>
<tr>
<td>Phan Thiet – Dau Giay</td>
<td>99</td>
<td>May-23</td>
<td>Insufficient lighting, inadequate signage</td>
</tr>
<tr>
<td>Trung Luong – My Thuan</td>
<td>51.5</td>
<td>2022</td>
<td>Absence of emergency lanes, high traffic safety risk</td>
</tr>
<tr>
<td>My Thuan – Can Tho</td>
<td>23</td>
<td>Early 2024 (Expected)</td>
<td>Similar design to Trung Luong – My Thuan, under scrutiny for safety and environmental standards</td>
</tr>
</tbody>
</table>

III. RESULTS

Traffic Safety

The evaluation of traffic safety for the expressway projects revealed significant concerns related to accident rates and safety features (Table III). For the Vinh Hao – Phan Thiet section, the absence of emergency lanes emerged as a critical issue, contributing to an increased risk of accidents. Data collected over the first six months of operation indicated an accident rate of 3.5 incidents per kilometer, with a notable concentration of accidents occurring in areas lacking proper lighting and signage. In the Phan Thiet – Dau Giay segment, insufficient lighting and inadequate signage were identified as major safety concerns. Analysis of traffic incident reports showed an average of 2.8 accidents per kilometer, primarily during nighttime and adverse weather conditions.
TABLE III TRAFFIC SAFETY ISSUES

<table>
<thead>
<tr>
<th>Expressway Segment</th>
<th>Accident Rate</th>
<th>Key Safety Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinh Hao – Phan Thiet</td>
<td>3.5 incidents/km</td>
<td>Lack of emergency lanes, inadequate lighting and signage</td>
</tr>
<tr>
<td>Phan Thiet – Dau Giay</td>
<td>2.8 incidents/km</td>
<td>Insufficient lighting, inadequate signage</td>
</tr>
<tr>
<td>Trung Luong – My Thuan</td>
<td>4.2 incidents/km</td>
<td>Absence of emergency lanes, poor traffic management</td>
</tr>
<tr>
<td>My Thuan – Can Tho</td>
<td>3.9 incidents/km (projected)</td>
<td>Similar design issues as Trung Luong – Mỹ Thuan, potential safety risks</td>
</tr>
</tbody>
</table>

These findings underscore the necessity for comprehensive safety improvements across all evaluated segments, emphasizing the importance of emergency lanes, adequate lighting, and clear signage to enhance overall traffic safety and reduce accident rates.

Environmental Impact

The environmental impact assessment of the expressway projects highlighted several significant effects on local ecosystems and factors related to climate change. Observations indicated that the construction and operation of the Vinh Hao – Phan Thiet and Phan Thiet – Dau Giay segments have led to noticeable alterations in the surrounding environment. Air quality measurements revealed an increase in particulate matter (PM10) levels, averaging 65 µg/m³, exceeding the national standard of 50 µg/m³. This elevation in air pollutants has been linked to increased construction activities and vehicular emissions along the expressway.

Water quality tests conducted in adjacent rivers and streams showed elevated concentrations of suspended solids and chemical pollutants, with turbidity levels rising by 30% compared to pre-construction data. These changes have adversely affected aquatic life, with a recorded decrease in fish populations by 20% in the affected water bodies. Soil erosion along the construction sites was another critical issue, leading...
segments indicated that 70% of the samples met the required engineering standards for compaction and stability. However, 30% of the samples showed higher levels of organic content and moisture, which could potentially compromise the integrity of the road base over time. This discrepancy necessitated additional treatment and stabilization processes, leading to increased construction costs and delays.

In the Mekong Delta, the availability of high-quality construction sand presented significant challenges. Over 50% of the sand samples tested from local sources were found to contain high salinity levels, unsuitable for use without extensive desalination processes. This issue was particularly acute in the Trung Luong – My Thuan and My Thuan – Can Tho segments, where the scarcity of suitable materials led to reliance on distant suppliers, further inflating costs. The average cost increase due to material transportation and treatment was estimated at 20%, significantly impacting the overall project budget.

Additionally, gravel quality assessments for all segments showed that approximately 80% of the samples conformed to the required size and hardness specifications. However, the remaining 20% exhibited fragmentation issues, which could affect the durability of the pavement structure. These findings emphasized the necessity for stringent quality control measures during material selection and procurement to ensure long-term performance and safety of the expressways.

### Material Quality

The evaluation of material quality for the expressway projects revealed several critical findings regarding the suitability and availability of construction materials. Laboratory testing of soil samples from the Vinh Hao – Phan Thiet and Phan Thiet – Dau Giay segments underscored the need for enhanced environmental management practices to mitigate the negative impacts of expressway projects on local ecosystems and address the challenges posed by climate change. Implementing sustainable construction techniques and improving pollution control measures are essential to safeguarding the environment while supporting infrastructure development.

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Segment</th>
<th>Conforming Samples</th>
<th>Non-conforming Samples</th>
<th>Key Issues</th>
<th>Cost Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>Vinh Hao – Phan Thiet</td>
<td>70%</td>
<td>30%</td>
<td>High organic content and moisture</td>
<td>Increased treatment costs</td>
</tr>
<tr>
<td>Soil</td>
<td>Phan Thiet – Dau Giay</td>
<td>70%</td>
<td>30%</td>
<td>High organic content and moisture</td>
<td>Increased treatment costs</td>
</tr>
<tr>
<td>Sand</td>
<td>Trung Luong – My Thuan</td>
<td>50%</td>
<td>50%</td>
<td>High salinity levels</td>
<td>Increased desalination costs</td>
</tr>
<tr>
<td>Sand</td>
<td>My Thuan – Can Tho</td>
<td>50%</td>
<td>50%</td>
<td>High salinity levels</td>
<td>Increased desalination costs</td>
</tr>
<tr>
<td>Gravel</td>
<td>All segments</td>
<td>80%</td>
<td>20%</td>
<td>Fragmentation issues</td>
<td>Potential impact on durability</td>
</tr>
</tbody>
</table>
IV. DISCUSSION

The study on the evaluation of highway projects in the Mekong Delta region of Vietnam has provided significant insights into the effectiveness of investment in terms of traffic safety and environmental impact. The findings indicate that the implementation of these projects has led to a substantial reduction in traffic accidents, as evidenced by a decrease in the accident rate from 5.2 accidents per 100 million vehicle kilometers traveled (VKT) to 3.1 accidents per 100 million VKT. This result aligns with the research objectives, demonstrating that the investment has indeed enhanced road safety, which is crucial for the economic and social development of the region.

Previous studies, such as those by Simanauskas and Sidlauskas (2006), have highlighted the complexity of evaluating investment projects using separate efficiency criteria, emphasizing the need for a multi-criteria approach to capture economic, social, and environmental aspects comprehensively. The current study corroborates these findings by employing a multi-criteria evaluation method that integrates various indicators, thereby providing a holistic assessment of the project’s impacts. Additionally, the environmental impact assessment results are consistent with those reported by H Jiang et al. (2022), who focused on the critical risks of infrastructure projects in the Mekong Delta under climate change scenarios. Both studies underscore the importance of considering environmental factors in project evaluations to ensure sustainable development.

Furthermore, research by Yazao et al. (2012) has demonstrated the significance of traffic impact simulations in predicting and mitigating negative effects during road construction projects. The current findings echo this by showing how improved traffic management and safety measures can substantially reduce accident rates. Similarly, Tran et al. (2023) have emphasized the socio-economic benefits of highway projects, including job creation and regional economic growth, which align with the observed improvements in traffic safety and reduced accident rates in the present study.

The insights gained from this study have significant implications for future highway projects in Vietnam. Firstly, the demonstrated reduction in traffic accidents suggests that similar safety measures and investments should be prioritized in upcoming projects. Policymakers should focus on implementing advanced traffic management systems and promoting road safety education. Secondly, the positive environmental outcomes highlight the need for continuous monitoring and mitigation of ecological impacts. Future projects should integrate comprehensive environmental impact assessments to identify potential adverse effects and implement appropriate mitigation strategies from the outset. These findings advocate for a balanced approach that harmonizes economic growth with environmental sustainability, guiding future infrastructure development policies in the Mekong Delta and similar regions.

V. CONCLUSION

The evaluation of expressway projects in the Mekong Delta and Eastern regions of Vietnam has revealed several key insights. The implementation of these projects has notably reduced traffic accident rates from 5.2 to 3.1 incidents per 100 million vehicle kilometers traveled (VKT). Additionally, environmental assessments have shown significant impacts, including increased levels of particulate matter (PM10) and turbidity in local water sources, alongside a 20% reduction in fish populations in affected areas. Material quality assessments highlighted that 30% of soil samples and 50% of sand samples did not meet the required standards, necessitating further treatment and raising project costs by an estimated 20%.
Based on these findings, several practical recommendations are proposed. To enhance traffic safety, it is crucial to implement advanced traffic management systems and increase the availability of emergency lanes across all expressway segments. Ensuring adequate lighting and clear signage will further reduce accident rates, particularly during nighttime and adverse weather conditions. Environmental sustainability must be prioritized through rigorous environmental impact assessments prior to project initiation, continuous monitoring during construction, and the implementation of mitigation strategies to minimize ecological disruption. Additionally, securing high-quality construction materials is essential, and alternative sources should be considered to reduce reliance on distant suppliers, thereby controlling costs and ensuring project timelines.

Addressing the identified issues is paramount to the success of future expressway projects in Vietnam. Enhancing traffic safety and environmental sustainability not only supports regional economic growth but also ensures the well-being of local communities and ecosystems. By adopting a balanced approach that integrates comprehensive planning, stringent quality control, and proactive environmental management, future infrastructure projects can achieve greater efficiency and sustainability. The findings of this study underscore the importance of continuous improvement and adaptation in project management practices to meet the evolving challenges of infrastructure development in the face of climate change and increasing urbanization.

VI. REFERENCES


