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ABSTRACT 

 

Construction industry is very complex system and needs to adapt most systematic as well as rational approach 

to optimize project duration to complete undertaken projects within stipulated time, budget and required 

quality. In process of optimization, a large number of interactive variables of the project creates problem, so 

need to determined there impact to reach any decision. Linear programming model help to optimize decision 

making in rigid environment, but in real working environment where goals, constrains, consequence of 

action are not known precisely, uncertainty play major factors  toward project success and performance, need 

certain degree of flexibility to be incorporated in decision making  model to optimize project duration. This 

paper demonstrates with fuzzy linear programming model to incorporate flexibility in project scheduling 

with a case study. 

Keywords : Fuzzy set, Linear Programming model, Fuzzy linear Programming, Optimization in Uncertain 

Environment. 

I. INTRODUCTION 

 

Most challenging jobs that any construction manager 

can take on are the management of a large scale 

project that requires coordinating numerous activities 

throughout project construction phase. A myriad of 

detail must be considered in planning how to 

coordinate all these activities, in developing a realistic 

schedule and then monitoring the progress of project. 

Organizations worldwide continue to have issues 

with completion of project on time, on budget, with 

high client satisfaction. This issue has been 

documented in the Construction industries. Research 

has shown the overall performance of services is poor 

with 2.5% of projects are defined as successful (scope, 

cost, schedule, and business), only 30% of projects are 

completed within planned cost and schedule, 25 to 50% 

is wasted due to problem of coordinating labor on a 

project, and management inefficiency.  

 

Project planning is important aspect in construction 

Industry to complete the project within stipulated 

time and budget with required quality and safety. 

Any construction project can become reality only 

when it is technologically and financially feasible. 

Highly variable and unpredictable factors influence 

construction process in greater extent. The effective 

management techniques are necessary to control 

time- resources- cost and achive success of project in 

reality.   Application of Operation Research (OR) 

techniques to construction project problem is quite 

common to achieve goals. 

 

Operation Research involves construction of 

mathematical model of decision and control problem 

to treat with complexity and uncertainty within 

system. When all factors affecting the system are 

known mathematical model can be developed and 
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linear programming is often used for allocating scares 

resources with objective of making optimal uses of 

them. 

 

As in linear programming both objectives function 

and constraints are rigid but practically they are 

variable such as situations, need to confront with 

scares resources and at time when project expected to 

complete at earliest due to additional availability of 

resources, same time constraints of completion of one 

activity to start another activity can’t expected 

accurately due to delays or early start time of 

preceding or succeeding activity. So the problem of 

optimal allocation of resources in efficient manner to 

minimize duration and to obtain maximum profit is 

great challenge to construction industry. To 

incorporate a certain degree of flexibility in order to 

get realistic duration of project with fuzzy set concept, 

this paper applied fuzzy linear programming to 

identify optimal construction project completion 

duration. A case study of model construction project 

is also considered in this course to estimate optimize 

project duration. 

 

II. METHODS AND MATERIAL 

 

A. Fuzzy Set Theory 

One can view fuzzy set as generalization of classical 

set or crisp set. Generally crisp set defined as a 

collection of objects that may share certain 

characteristics, so elements of crisp set are precise and 

sharp, unambiguous distinction exits between 

members and nonmembers. One may define set of 

positive integer ℕ = {1,2,3,… . }  i.e. element x is 

either a member of given set ℕ  ( xϵ ℕ ) or not a 

member (x∉ ℕ), partial membership not allowed. A 

set is defined by a function, called Characteristic 

Function that declares which elements are members 

of set and which are not. Set A defined by 

characteristic function, 𝜒𝐴  as follows:  

 𝜒𝐴(𝑥) = {
1    𝑓𝑜𝑟 𝑥 ∈ 𝐴 
0    𝑓𝑜𝑟 x ∉ A

   

i.e. characteristic function maps universal set X to 

elements of set {0,1} ;  𝜒𝐴: 𝑋 → {0,1}. This function 

can be generalized such that values assigned to the 

elements of universal set fall within a specified range 

and indicate membership grade of these elements in 

set in questions. Such function is called membership 

function and set defined by it a fuzzy set. 

Membership function  of a fuzzy set 𝐴̃ maps elements 

of given universal set X, which is always a crisp set 

into real numbers in [0,1] i.e.  𝜇𝐴̃: 𝑋 → [0,1] 

 

Thus fuzzy set is a set where degrees of membership 

between 1 and 0 are allowed i.e. it allowed partial 

membership and can better reflect the way intelligent 

people think. As an intelligent people not classify 

people as either friends or enemies there is a range 

between these two extreme. Fuzzy set theory 

developed specifically to deal with uncertainties that 

are not statistical in nature and use to model 

imprecision, ambiguity or fuzziness in formulation. 

Membership function allows various degrees of 

membership for the elements in X of a given fuzzy set 

𝐴̃ , is a set of ordered pairs: 𝐴̃ = {(𝑥, 𝜇𝐴̃(𝑥))|𝑥 ∈ 𝑋} 

𝜇𝐴̃(𝑥) = membership function / grade of membership / 

degree of truth of x in 𝐴̃. 

Let X= universal set; x= is set of element and A = 

subset of X; Characteristic function, for fuzzy set 

 𝜇𝐴 = {
∈ [1,0] 𝑖𝑓 − 𝑎 ≤ 𝑥 ≤ 𝑎;   𝑥 ∈ 𝐴
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ;  x ∉ A

   

and for crisp set (illustrate in Figure 1) 

𝜒𝐴(𝑥) = {
1    𝑓𝑜𝑟 − 𝑎 ≤ 𝑥 ≤ 𝑎;  𝑥 ∈ 𝐴 

0    𝑓𝑜𝑟 x ∉ A
 

 
Figure 1. Difference between Crisp set and Fuzzy set. 
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B. Optimization in Uncertain Environment or Fuzzy 

Decision Making 

The subject of Decision making is the study of how 

decisions are actually made and how they can be 

made better and more successfully. Field is concerned, 

in general, with both descriptive theories, normative 

theories. Much of the focus in developing the field 

has been in area of management, in which decision 

making process is key importance for functions such 

as Allocation of resource, inventory control, 

investment, personnel actions, as well as many others. 

Decision making is very important part in project 

planning, implementation in construction Industry. 

In this course they deal with uncertain situations due 

to different uncertain variables present in project 

environment.  

 

Applications of fuzzy sets within the field of decision 

making have, for the most part, consisted of 

fuzzification of the classical theories of decision 

making [1]. In classical (normative, statistical) 

decision theory, a decision can be characterized by a 

set of decision alternatives (the decision space), a set 

of states of nature (the state space), a relation 

assigning to each pair of a decision and state a result 

and finally, the utility function that orders the results 

according to their desirability.  

 

When deciding under certainty, the decision maker 

knows which state/ outcomes to expect and chooses 

the decision alternative with the highest utility, given 

the prevailing state of nature. When deciding under 

risk, i.e. does not know exactly which state will occur, 

only knows a conditional probability distribution one 

for each alternatives action. When probabilities of 

outcomes are not knows or may not even be relevant 

and outcomes for each alternatives action are 

characterized only approximately, decision are made 

under uncertainty is prime domain of fuzzy decision 

making. 

Fuzziness can be introduced into existing model in 

different ways. Bellman and Zadeh [2] suggest fuzzy 

model of decision making in which relevant goals and 

constraints are expressed in terms of fuzzy sets, 

decision is determined by an appropriate aggregation 

of these fuzzy sets. 

 

The objective function as well as constrains is fuzzy in 

project environment and relationship between 

constraints and objective function in fuzzy 

environment is symmetric; decision is confluence of 

goal and constraints [3]. 

 

Assume that a fuzzy goal 𝐺̃  and a fuzzy constraint 

𝐶 ̃in a space of alternatives X is known. Then 𝐺̃ and 𝐶 ̃ 

combine to form a decision 𝐷̃, which is a fuzzy set 

resulting from intersection of 𝐺̃  and 𝐶̃ . In symbols, 

𝐷̃  =  𝐺̃  ∩ 𝐶̃ , and correspondingly, 𝜇𝐷̃ = min (𝜇𝐺̃,𝜇𝐶̃)  

𝜇𝐷̃ =  membership function of fuzzy set 

decision, 𝜇𝐺̃ = membership function of fuzzy set goal 

𝜇𝐶̃ = membership function of fuzzy set constraints 

More generally, suppose that n goals 𝐺̃1, 𝐺̃2, … . , 𝐺̃𝑛 

and m constrains 𝐶̃1, 𝐶̃2, … . , 𝐶̃𝑚  , then resultant 

decision is intersection of given goals and constrains 

i.e. 𝐷̃  =   𝐺̃1 ∩ 𝐺̃2 ∩ … .∩ 𝐺̃𝑛 ∩ 𝐶̃1 ∩ 𝐶̃2 ∩… .∩ 𝐶̃𝑛  and 

correspondingly 𝜇𝐷̃ =

min{𝜇𝐺̃1 , 𝜇𝐺̃2 , ……… . , 𝜇𝐺̃𝑛 , 𝜇𝐶̃1 , 𝜇𝐶̃2 , ……… , 𝜇𝐶̃𝑚} =

min {𝜇𝐺̃𝑖 , 𝜇𝐶̃𝑗} = min{𝜇𝑖} 

So there are three assumptions: 

a> The “and” connecting Goals, constrains in 

model corresponds to “logical and”. 

b> The “Logical and” corresponding to set theoretic 

intersection. 

c> The intersection of fuzzy sets is defined by min 

operator. 

In short, a broad definition of the concept of decision 

may be stated as: Decision = Confluence 

of Goals in Constraints. 

As the fuzzy set “decision” is characterized by 

membership function 𝜇𝐷̃ = min (𝜇𝐺̃,𝜇𝐶̃) i.e minimum 
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of 𝜇𝐺̃,𝜇𝐶̃ illustrate in Figure 2. If the decision maker 

wants to have a crisp decision proposal, the highest 

degree of membership in the fuzzy set decision is 

suggested [4,5]. This is call "maximizing decision", 

defined by 

 𝑎∗ = arg (𝑚𝑎𝑥min(𝜇𝐺̃,𝜇𝐶̃)) 

 
Figure 2. Maximizing Decision 

 

C.  Linear Programming 

Linear programming (LP) deals with the problem of 

allocating available limited resources among 

competing activities in an optimal manner. Classical 

LP problem is to find minimum or maximum values 

of a linear function under constraints represented by 

linear inequalities or equations. 

Minimum or Maximize 𝐶1𝑥1 + 𝐶2𝑥2 +⋯ .+𝐶𝑛𝑥𝑛 

Subject to    𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1 

         𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 ≤ 𝑏2  

   ………….. 

         𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚 

  𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 ≥ 0 

Where, 𝑥𝑖= Decision Variables 𝐶𝑖= Cost Coefficients 

𝑎𝑖𝑗= Technological Coefficient 𝑏𝑖= Resource Values 

In convenient matrix notation a typical LP can be 

express as-  

Max /Min Z= CTx 

Subject to,  𝐴𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑥 ≥ 0 

where, Z= Objective function; T= Transpose Matrix . 

𝐶𝑇 = (𝐶1, 𝐶2, … . , 𝐶𝑛)
𝑇   Vector of known constant 

containing coefficients in objective function 𝑥 =

(𝑥1, 𝑥2, … . , 𝑥𝑛) vector of decision variables 𝐴[𝑎𝑖𝑗]𝑖 ∈

ℕ𝑚 𝑗 ∈ ℕ𝑛  is matrix containing technological 

coefficient i.e. constraint matrix b= (𝑏1, 𝑏2, … . , 𝑏𝑚)
𝑇 

is RHS values of constraints. Set of x that satisfies all 

given constraints is called feasible set. 

 

In practical situations it is not reasonable to require 

that constraints or the objective function in linear 

programming problem be specified in precise, crisp 

terms. Since real world problems does not go with 

rigidity, need to introduce flexibility in LP model. 

Such situation it is desirable to use fuzzy linear 

programming. 

 

D. Fuzzy Linear Programming: 

Fuzzy linear programming is extremely used for 

decision making in uncertain environment. Taking 

assumption that LP-decision has to be made in fuzzy 

environments, quite a number of possible 

modifications of LP model depends on what and 

where fuzziness is to be introduced, which may be 

initiated in following ways: 

 

Firstly, decision maker might not really want to 

actually maximize or minimize the objective function. 

Rather, want to reach some aspiration levels that 

might not even be definable crisply. 

a> The fuzzy Goal i.e. Maximum of linear 

Objective function is expressed vaguely and 

usually with aspiration level and it has 

flexibility e.g.  The target value of objective 

function 𝐶𝑇𝑥   is maximum as possible and 

pursued an aspiration level. 

 

Secondly, the constraints might be vague in one of 

the following ways : ≤ sign might not be meant in the 

strictly mathematical sense, but smaller violations 

might well be acceptable. This can happen if the 

constraints represent aspiration levels, for instance, 

the constraints represent sensory requirements (taste, 

color, smell, etc.) that cannot adequately be 

approximated by a crisp constraint. Of course, the 

coefficients of the vectors b or C or of the matrix A 

itself can have a fuzzy character either because they 
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are fuzzy in nature or because perception of them is 

fuzzy. 

a> The Fuzzy Constrains i.e linear system of 

constrains expressed by fuzzy relations in terms 

of fuzzy equations or/and fuzzy inequalities. 

b> The Objective function with fuzzy cost 

coefficient 𝐶𝑖̃ 

c> The linear system of constrains with fuzzy 

technical coefficient 𝐴𝑖𝑗̃ and/ or fuzzy resources 

𝐵𝑖̃ 

 

Finally, the role of the constraints can be different 

from that in classical linear programming, where the 

violation of any single constraint by any amount 

renders the solution infeasible. The decision maker 

might accept small violations of constraints but might 

also attach different degrees of importance to 

violations of different constraints. 

a> Constrains can be represented by fuzzy set 

rather than crisp inequalities. 

 

Fuzzy linear programming offers a number of ways to 

allow for all these types of vagueness, and one way to 

be considered as Bellman-Zadeh's concept of a 

symmetrical decision model. 

Consider a model problem to maximize an objective 

function subject to constraints. 

Maximize 𝑍 = 𝑓(𝑥) = 𝐶𝑇𝑥 

Subject to  𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0       ….(1) 

A, b,C describe relevant state variables; x decision 

variables; Z resulting from combination of state and 

decision variables. Objective function is expressed by 

requirement to maximize Z. 

 

Now introducing subjective aspiration level for value 

of the objective function (Z) want to achieve, and 

fuzzifying the equations in appropriate linguistic 

interpretations, each constraints is modeled as fuzzy 

set, LP is transformed into a fuzzified version: 

 

Find x such that  𝐶𝑇𝑥~
> 𝑍 ; 𝐴𝑥 ~

< 𝑏; 𝑥 ≥ 0  … (2) 

H 𝑒𝑟𝑒 ~
<  denote fuzzified version of ≤   has the 

linguistic interpretation "essentially smaller than or 

equal to” and ~
> denote fuzzified version of ≥ has the 

linguistic interpretation "essentially greater than or 

equal to". Objective function is minimizing goal in 

order to consider Z as an upper bound i.e. −𝐶𝑇𝑥~
< − 𝑍  

model (2) is fully symmetric with respect to objective 

function and constraints. Substituting (–𝐶 
𝐴
) = 𝐵  and 

(–𝑍 
𝑏
) = 𝑑 

Find x such that 𝐵𝑥 ~
< 𝑑; 𝑥 ≥ 0 … (3) 

Each of the (m + 1) rows of model (3) shall now be 

represented by a fuzzy set, the membership functions 

of which are 𝜇𝑖(𝑥).  So 𝜇𝑖(𝑥) can be interpreted as the 

degree to which x fulfills/ satisfies fuzzy inequality 

𝐵𝑖𝑥 ≤ 𝑑𝑖 here 𝐵𝑖 denote ith row of B and right hand 

side number 𝑑𝑖  are fuzzy number.  Therefore, the 

membership function of the fuzzy set "decision" of 

model (3) is  

𝜇𝐷̃(𝑥) = min
𝑖
{ 𝜇𝑖(𝑥)} ∀ 𝑖 = 1,2,3,… ,𝑚 + 1 …(4) 

Assuming that the decision maker is interested not in 

a fuzzy set but in a crisp "optimal" solution, then it 

could suggest  

max
𝑥≥0

min
𝑖
{𝜇𝑖(𝑥)} = max

𝑥≥0
 𝜇𝐷̃(𝑥)… (5) 

Now specify the membership functions 𝜇𝑖(𝑥) should 

be 0 if the constraints (including the objective 

function) are strongly violated, and 1 if they are very 

well satisfied (i.e., satisfied in the crisp sense); and 

𝜇𝑖(𝑥) should increase monotonously from 0 to 1, that 

is (ref to Figure 3). 

𝜇𝑖(𝑥) = {

1      𝑖𝑓𝐵𝑖𝑥 ≤ 𝑑𝑖
      𝜖[1,0]  𝑖𝑓 𝑑𝑖 < 𝐵𝑖𝑥 ≤ 𝑑𝑖 + 𝑝𝑖
                0           𝑖𝑓 𝐵𝑖𝑥 > 𝑑𝑖 + 𝑝𝑖  

      ∀𝑖 =

1,2,… . ,𝑚 + 1 …(6)  

 
Figure 3. Fuzzy number. 
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Using the simplest type of membership function, 

assuming them to be linearly increasing over the 

"tolerance interval" 𝑝𝑖  , : 

𝜇𝑖(𝑥) = {

1      𝑖𝑓𝐵𝑖𝑥 ≤ 𝑑𝑖

     1 −
𝐵𝑖𝑥−𝑑𝑖

𝑝𝑖
  𝑖𝑓 𝑑𝑖 < 𝐵𝑖𝑥 ≤ 𝑑𝑖 + 𝑝𝑖

                0           𝑖𝑓 𝐵𝑖𝑥 > 𝑑𝑖 + 𝑝𝑖 

     ∀𝑖 =

1,2,… . ,𝑚 + 1     …(7) 

The 𝑝𝑖 are subjectively chosen constants of admissible 

violations of the constraints and the objective 

function. Substituting equation (7) into model (5) 

yields, after some rearrangements [Zimmermann 1976] 

and with some additional assumptions, 

max
𝑥≥0

min
𝑖
{1 −

𝐵𝑖𝑥 − 𝑑𝑖
𝑝𝑖

}… (8) 

Introducing new variable 𝜆 and flexibility 𝑝𝑖 get max 

𝜆  

such that 𝜆𝑝𝑖 + 𝐵𝑖𝑥 ≤ 𝑑𝑖 + 𝑝𝑖    ∀𝑖 = 1,… ,𝑚 + 1  

0 ≤ 𝜆 ≤ 1; 𝑥 ≥ 0 …(9) 

The optimal solution to problem (9) is the vector 

(𝜆, 𝑥0) then 𝑥0 is the maximizing solution of (5) of 

model (2), assuming membership functions as 

specified in (7). 

So far, the objective function and all constraints were 

considered fuzzy. If some of the constraints are crisp, 

𝐷𝑥 ≤ 𝑏′, then these constraints can easily be added to 

formulations. 

max 𝜆  

such that 𝜆𝑝𝑖 + 𝐵𝑖𝑥 ≤ 𝑑𝑖 + 𝑝𝑖   ∀ 𝑖 = 1,… ,𝑚 + 1  

𝐷𝑥 ≤ 𝑏′ 

0 ≤ 𝜆 ≤ 1; 𝑥 ≥ 0 …(10) 

 

Let us now turn to the case in which the objective 

function is crisp and determination of a crisp 

"maximizing decision" by aggregating the objective 

function after appropriate transformations with the 

constraints. By considering the objective function to 

be crisp and by adding a set of crisp constraints 𝐷𝑥 ≤

𝑏′: 

 By maximizing  

𝑓(𝑥) = 𝐶𝑇𝑥   

such that  𝐴𝑥 ~
< 𝑏; 𝐷𝑥 ≤ 𝑏′; 𝑥 ≥ 0 … (11) 

Let the membership functions of the fuzzy sets 

representing the fuzzy constraints be defined in 

analogy to equation (7).  

𝜇𝑖(𝑥) =

{
 

 
1      𝑖𝑓𝐴𝑖𝑥 ≤ 𝑏𝑖

   
𝑏𝑖 + 𝑝𝑖 − 𝐴𝑖𝑥

𝑝𝑖
  𝑖𝑓 𝑏𝑖 < 𝐴𝑖𝑥 ≤ 𝑏𝑖 + 𝑝𝑖

                0           𝑖𝑓 𝐴𝑖𝑥 > 𝑏𝑖 + 𝑝𝑖 

     

∀𝑖 = 1,2,… . ,𝑚 + 1  

The membership function of the objective function (5) 

can be determined by solving the following two LPs: 

Maximize 𝑓(𝑥) = 𝐶𝑇𝑥   

such that  𝐴𝑥 ≤ 𝑏;𝐷𝑥 ≤ 𝑏′; 𝑥 ≥ 0   ….(12) 

yeilding 𝑓1 = (𝐶
𝑇𝑥)𝑜𝑝𝑡 

and 

Maximize 𝑓(𝑥) = 𝐶𝑇𝑥   

such that   𝐴𝑥 ≤ 𝑏 + 𝑝; 𝐷𝑥 ≤ 𝑏′; 𝑥 ≥ 0   …(13) 

yeilding 𝑓0 = (𝐶
𝑇𝑥)𝑜𝑝𝑡 

 
Figure 4. Fuzzy constraint. 

 

The membership function of the objective function is 

therefore: 

𝜇𝐺̃(𝑥) =

{
 
 

 
 1  𝑖𝑓 𝑓0 ≤ 𝐶

𝑇𝑥

𝐶𝑇𝑥 − 𝑓1
𝑓0 − 𝑓1

 𝑖𝑓 𝑓1 <  𝐶
𝑇𝑥 <

0 𝑖𝑓 𝐶𝑇𝑥 ≤ 𝑓1

 𝑓0 

This achieved "symmetry" between constraints and 

the objective function, and can employ the approach 

used to derive model (9) as an equivalent formulation 

of model (2). The equivalent model to (6) is: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝜆 

Such That  𝜆(𝑓0 − 𝑓1) − 𝐶
𝑇𝑥 ≤ −𝑓1 

𝜆𝑝 + 𝐴𝑥 ≤ 𝑏 + 𝑝 

𝐷𝑥 ≤ 𝑏′;  0 ≤ 𝜆 ≤ 1; 𝑥 ≥ 0  …..(14) 

Flexibility introduce in various elements of Fuzzy 

linear programming model using trapezoidal 
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representation as figure 4 Methodology has been 

illustrated by a case study. 

 

 

III.  RESULTS AND DISCUSSION 

 

A. Case Study 

The activities and their duration involving into construction of a typical building project are listed in table 1. 

Table 1. List of Activities. 

Activity Activity Description  Immediate 

predecessor 

Estimated 

duration in days 

A Equipping the site and dismantling -- 14 

B Earthwork excavation for foundation A 7 

C Concreting the footer B 21 

D Erecting the frames for column and concreting C 14 

E Slabs and beams D 21 

F Brickwork E 21 

G Laying sewage pipes F 7 

H Filling the basement G 7 

I Rough plumbing F 7 

J Electrical wiring F 7 

K Provision for air conditioning H,I 14 

L Plastering K,J 21 

M Flooring L 21 

N Acoustic arrangement L 7 

O Finished plumbing N 7 

P Fixing doors and windows M 7 

Q White washing and finishing P,O 21 

 

 
Figure 5. Activity-on-node configuration. 
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Figure 6. CPM network Diagram. 

 
B. Linear Programming Formulation 

The objective function for the linear programming 

model is to minimize project duration. Xi(∀i =

A, B, C, … )  represent activities in network i.e. XA 

represent Equipping the site and dismantling with 

duration represent Earthwork excavation for 

foundation with duration 7 then difference between 

earliest event times of 𝑋𝐵 and earliest event times of 

𝑋𝐴  at least as great as the activity time duration of 

activity𝑋𝐴 . A set of constraints that expresses this 

condition is defined as: 𝑋𝐵 − 𝑋𝐴 ≥ 14. Similarly other 

constraint equations are formulated using network. 

 

The objective of the project network is to determine 

the earliest time the project can be completed (i.e., 

the critical path time). So the earliest event time of 

the last node in the network equals the critical path 

time. Implicitly assuming  𝑋𝐴, 𝑋𝐵,…,𝑋𝑄, 𝑋𝑍 ≥ 0 ; 𝑋𝑍  is 

time to completion of project,  solution of linear 

programming model through LINGO (Figure  7)  

result  Project  Duration of 196 days i.e. equation (12). 

Yielding 𝑓1 = (𝐶
𝑇𝑥)𝑜𝑝𝑡=196 days. 

 

 
Figure 7. analysis for LP model using LINGO. 

 
C. Fuzzy Linear Programming: 

Due to presence of real world uncertainties like 

availability of resource, or delay in activity 

completion or others, solution of above linear 

optimization does not reveal true picture of project 

duration.  

 

Flexibility is incorporated in constraints equations 

using fuzzy linear programming and above LP model 

is transform to equation (14) with different aspiration 

level introduced into duration of activities. 
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Table 2. List of activities with aspiration level duration. 

 

Activity Activity Description  Immediate 

predecessor 

Original 

Estimated 

duration (𝑏𝑖) 
 in days 

Aspiration level 

duration (𝑏𝑖 +
𝑝𝑖) 
in days 

A Equipping the site and dismantling  14 14 

B Earthwork excavation for 

foundation 

A 7 7 

C Concreting the footer B 21 21 

D Erecting the frames for column 

and concreting 

C 14 18 

E Slabs and beams D 21 21 

F Brickwork E 21 16 

G Laying sewage pipes F 7 7 

H Filling the basement G 7 7 

I Rough plumbing F 7 7 

J Electrical wiring F 7 7 

K Provision for air conditioning H,I 14 9 

L Plastering K,J 21 17 

M Flooring L 21 23 

N Acoustic arrangement L 7 7 

O Finished plumbing N 7 7 

P Fixing doors and windows M 7 7 

Q White washing and finishing P,O 21 21 

 
Figure 8. CPM network Diagram with aspiration level of duration. 

 
Figure 9. analysis for LP model using LINGO with aspiration level duration. 
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Solution of linear programming model through 

LINGO (Figure  9) result Project Duration of 188 days 

i.e. equation (13). Yielding f_0=〖(C^T x)〗_opt=188 

days. 

Therefore availability of resources, duration of some 

activity changes result final project duration reduces 

to 188 days from 196 days. Now introducing new 

variable λ  that gives degree of satisfaction for 

optimization, 0≤λ≤1 (represent as L in LINGO) the 

problem is reformulated using equation (14) where 

objective function has been converted to a constraints.  

Solution of Fuzzy linear programming model through 

LINGO (Figure  10)  result minimum duration of 192 

days with value of λ =0.5. 

 
Figure 10. analysis for fuzzy LP model using LINGO. 

 

IV. CONCLUSION 

 

A construction project is considered successful if it is 

completed within stipulated time and budget with 

required quality and safety. So proper understanding 

and estimating of project duration is very important, 

crucial and sometime critical in controlling project or 

scheduling.  Presence of uncertainties in various 

stages of activities may affect project completion 

duration that can incorporate into Fuzzy linear 

programming analysis. FLP allows flexibility is 

introduced in constraints, and objective function is 

transformed to another constraint. As In Case study 

reveal project duration reduce from 196 days to 192 

days i.e. 2% flexibility in constraints, helping to 

identified optimum project duration in uncertain 

environment. 
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